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1. Introduction

According to the AdS/CFT duality, type IIB string theory in the AdS5 × S5 background

is equivalent to N = 4 super-Yang-Mills theory in four dimensions [1]. Understanding and

proving the AdS/CFT correspondence requires however solving both the planar limit of

N = 4 super-Yang-Mills theory and the AdS5×S5 worldsheet string theory at finite values

of their coupling constants.

While this remains a formidable task, questions of a kinematical nature – such as the

determination of their spectra – may be answered by making use of the special properties
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of these two theories. For N = 4 super-Yang-Mills the spectrum of anomalous dimensions

of gauge-invariant operators is determined by an auxiliary spin chain whose Hamiltonian

is the dilatation operator of the theory. In the appropriate variables, the AdS/CFT cor-

respondence implies that the anomalous dimensions of gauge-invariant operators should

equal the worldsheet energies of the corresponding closed string states. Even though both

the worldsheet sigma-model [2 – 4] and the spin chain that describes the spectrum of the

super-Yang-Mills theory [5, 6] are integrable (see [7] for a review), explicitly solving them

is a daunting task.

In the flat space limit the worldsheet theory is free and its spectrum is built from

noninteracting oscillators. The curvature and RR flux of AdS5 × S5 introduce nontrivial

interactions such that the spectrum is expected to be a complicated collection of discrete

levels. However, the integrability of the theory guarantees that the spectrum retains a

Fock space structure. Indeed, one of the many definitions of integrability is that one can

globally separate action-angle variables and thus define a set of independent oscillators [8].

Although explicitly separating variables is not easy in the quantum theory [9], the

features of the outcome of this procedure are quite universal. The spectrum is determined

by quantization conditions for a set of particle’s momenta which typically constitute a

set of coupled functional equations (the Bethe equations [10]). The 2 → 2 S-matrix is of

central importance for this construction. The S-matrix usually determines the spectrum in

an asymptotically large volume and with some additional input the generalization to the

exact finite-size spectrum is possible in many cases.

The S-matrix for the super-Yang-Mills spin chain was introduced in [11]. As discussed

in [12, 13] the non-perturbative S-matrix is almost completely determined by the global

symmetries unbroken by the choice of vacuum state for the spin chain Hamiltonian. An

overall abelian phase remains undetermined by symmetries. It was suggested [14] that

it should obey a constraint of a similar nature to the crossing symmetry in relativistic

quantum field theories.

The first two terms in the large ’t Hooft coupling expansion of the abelian phase have

been found in [15] and [16], respectively. Subsequently an asymptotic series solution to

the crossing condition was constructed in [17]. An analytic continuation to weak coupling,

which reproduces the explicit calculation [18] of the four-loop anomalous dimensions of

twist-two large spin operators was put forward in a recent paper [19] and further discussed

in [20].

The aim of our work is to initiate the perturbative study of the S-matrix of the entire

worldsheet sigma-model. Earlier studies, discussing special truncations of the field content

of the worldsheet theory, have appeared in [21, 22]. Such calculations have the potential

of checking the validity of algebraic considerations for both the tensor structure and the

abelian phase of the S-matrix while providing insight into the realization of the symmetries

in the interacting theory as well as further confirming its integrability.

Our starting point is the light-cone gauge-fixed worldsheet theory in AdS5 × S5. The

Lagrangian has terms with arbitrary numbers of fields of which the quadratic part is that
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of a free massive theory.1 The closed string spectrum is the Fock space of massive modes

with quantized momenta (BMN modes). The interactions are generated by the geometric

curvature and RR-flux; they induce corrections to the free massive spectrum, which have

been calculated to leading order in [27] (see also [28, 29]). In the infinite-volume regime

the spectrum is continuous and interactions cause a non-trivial scattering of asymptotic

states.

We will calculate the worldsheet scattering amplitudes2 in the light-cone gauge to

leading order in perturbation theory. The residual symmetry of the sigma-model in that

gauge, the centrally extended psu(2|2)⊗ psu(2|2), is the same as the symmetry of the spin

chain S-matrix [12]. On the worldsheet the central charges arise once the level matching

condition is relaxed [30]. As we will show, a mild nonlocality of the supersymmetry gen-

erators enhances the symmetry algebra to a Hopf algebra. We will argue that the main

consequences of this algebra hold also at the quantum level.

While rigorously proving (quantum) integrability is probably as hard as solving the

model exactly, the additional conservation laws present in an integrable theory have testable

consequences. In particular, they kinematically forbid particle production in the scattering

processes and require factorization of the many-body S-matrix. We will check these prop-

erties at tree level for the gauge-fixed sigma-model in AdS5 × S5 by explicit calculations

of scattering amplitudes. We should mention that classical integrability (well established

for the AdS string) does not automatically guarantee that the corresponding quantum the-

ory is integrable, because conservation laws of higher charges may suffer from quantum

anomalies [31]. For the case of the strings in AdS5 × S5 arguments in favor of quantum

integrability and the absence of anomalies have been formulated in [4].

We begin in section 2 by describing the field content of the gauge-fixed worldsheet

theory and certain puzzling facts about the interplay between its Lagrangian and its ex-

pected symmetries. We also summarize our results for the classical S-matrix. In section 3

we derive the action of the symmetry generators on the S-matrix and thus solve the issues

raised in the previous section. The two-body S-matrix is calculated to the leading order

in perturbation theory in section 4. There we also show that 2 → 4 scattering amplitudes

vanish for bosonic in- and out-states. In section 5 we calculate the complete tree-level

S-matrix, which we compare with the strong-coupling limit of the spin chain S-matrix in

section 6. We conclude with the discussion of the results in section 7.

Note added: Arutyunov, Frolov and Zamaklar [55] constructed the S-matrix matrix

that satisfies the quantum Yang-Baxter equation and yields in the weak-coupling limit the

tree-level scattering matrix found here. As a consequence, the tree-level scattering matrix

should obey the classical Yang-Baxter equation. We refer the reader to [55] for the detailed

discussion of this important property of the world-sheet S-matrix.

1This theory is also the light-cone gauge-fixed string theory in a plane wave which was shown in [23] to

be a Penrose limit of AdS5 × S5. It was quantized in [24] and its complete spectrum was constructed in

[25]. The relation between the string theory spectrum and gauge-invariant super-Yang-Mills operators was

described in detail in [26].
2They can only be defined on an infinite string worldsheet and should not be confused with the more

familiar target-space amplitudes.
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2. Summary of results

The quantization of the Green-Schwarz string is a longstanding problem and over time var-

ious solutions have been proposed, each preserving various parts of the original symmetries

of the theory; the more symmetry is preserved the larger the number of unphysical fields

appearing in the worldsheet theory. The AdS/CFT correspondence relates gauge theory

observables to string theory observables. Consequently, for the purpose of string theory

calculations, one is tempted to explicitly eliminate all unphysical degrees of freedom by

fixing a unitary gauge. With this motivation in mind we will use the light-cone gauge3

[29], the fixed-J gauge [27, 34] as well as a one-parameter superposition [35].4

The fields. For our purpose it is most convenient to choose the global coordinatization

of AdS5 × S5; we will choose the metric

ds2 = −Gtt(z)dt2 + Gzz(z)dz2 + Gϕϕ(y)dϕ2 + Gyy(y)dy2 (2.1)

where

Gtt =

(
1 + z2

4

1 − z2

4

)2

, Gzz =
1

(
1 − z2

4

)2 , Gϕϕ =

(
1 − y2

4

1 + y2

4

)2

, Gyy =
1

(
1 + y2

4

)2 .

(2.2)

ym and zµ are four-component vectors. y2 and z2 stand for their Euclidean scalar squares.

The corresponding worldsheet fields are denoted by capital letters T,Z,Φ, Y . One combina-

tion of the longitudinal fields T and Φ will be used in our gauge choice while the derivatives

of the other (independent) combination are determined by the Virasoro constraints. As

usual in light-cone gauge, its zero-mode is however undetermined.

The SO(8) ⊂ SO(6) × SO(4, 2) preserved by the gauge choice at the quadratic level

is broken by interactions to SO(4) × SO(4). The transverse bosonic fields, Y m and Zµ,

form the defining representation of this group. A more efficient parametrization in the

presence of fermions is provided by the isomorphism SO(4) ' (SU(2) × SU(2))/
�

2. Its

explicit realization – in terms of the Pauli matrices σm = (�, i~σ) and σµ = (�, i~σ) for the

two copies of SO(4) – represents Y and Z as bispinors of the relevant SO(4):

Yaȧ = (σm)aȧY
m , Zαα̇ = (σµ)αα̇Zµ . (2.3)

The fermions also transform as bi-spinors of SO(4) × SO(4), but they are charged with

respect to different SU(2) factors. The worldsheet fermions that remain after fixing the

κ-symmetry gauge will be denoted by

Ψaα̇ and Υαȧ . (2.4)

3There are essentially two ways to fix the light-cone gauge in AdS5 × S5, which differ by picking in-

equivalent light-cone geodesics. In one case, the light-cone directions lie in AdS5 [32]; this gauge choice is

possible only in the Poincaré patch of AdS5. In the other case the light cone is shared between AdS5 and

S5 [33, 29]. We consider the latter case.
4Since such gauges (which, incidentally, preserve the least amount of symmetry) typically involve solving

the classical constraints of the theory, it is not immediately clear whether any gauge in this class is justified

at the quantum level. We are however interested in the classical theory where no subtleties can arise.
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S5 AdS5

SU(2) SU(2) SU(2) SU(2)

“Spin” J J̇ Ṡ S

Index a = 1, 2 ȧ = 1̇, 2̇ α̇ = 3̇, 4̇ α = 3, 4

Yaȧ 2 2 1 1

Zαα̇ 1 1 2 2

Ψaα̇ 2 1 2 1

Υαȧ 1 2 1 2

Table 1: SU(2)4 quantum numbers of the physical degrees of freedom. We use different values for

the S5 part and the AdS5 part, such that an index can be identified from its value without giving

the index symbol. Representations of SU(2)4 will be denoted by (2J + 1,2J̇ + 1,2Ṡ + 1,2S + 1).

The quantum numbers of all fields with respect to SU(2)4 are summarized in table 1.

This description does not fix the action of the supercharges on fields. It turns out [27]

that bosons and fermions together form the bi-fundamental representation ((2|2), (2|2))

of PSU(2|2)L × PSU(2|2)R. The bosonic subgroup of each PSU(2|2) factor consists of two

SU(2) groups, one from each of the original SO(4) factors. The supercharges relate bosons

and fermions following the edges of the diagram:

Yaȧ ↔ Ψaα̇

l l
Υαȧ ↔ Zαα̇

(2.5)

The odd generators of PSU(2|2)L act vertically and the ones of PSU(2|2)R act horizontally.

Even though the complete supergroup symmetry is not manifest, one may formally

define superindices A = (a|α) and Ȧ = (ȧ|α̇), where the lower-case latin indices are

Graßmann-even and the greek indices are Graßmann-odd. Thus, all fields combine into a

single bi-fundamental supermultiplet of PSU(2|2)L × PSU(2|2)R which we will denote by

ΦAȦ.

The S-matrix. The two-particle S-matrix is an operator between two copies of the tensor

product of the module Wp, generated by ΦAȦ(p), with itself for different momenta:

�
: Wp ⊗ Wp′ → Wp ⊗ Wp′ . (2.6)

In the basis provided by ΦAȦ(p), its matrix representation is

� |ΦAȦ(p)ΦBḂ(p′)〉 = |ΦCĊ(p)ΦDḊ(p′)〉 �CĊDḊ
AȦBḂ

(p, p′) (2.7)

and barring anomalies, the S-matrix respects the symmetries of the theory. In an integrable

theory the S-matrix satisfies a number of additional kinematic constraints: there should

be no particle production and the many-body S-matrix should factorize into the products
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of the two-particle S-matrices. Consistency of the factorization requires that the latter S-

matrix satisfies the quantum Yang-Baxter equation (YBE). The YBE is very constraining

and in particular a factorizable S-matrix invariant under a non-simple group, such as

PSU(2|2) × PSU(2|2), must be a tensor product of S-matrices for each of the factors (see

e.g. [36])5 :

�
= S ⊗ S ,

�CĊDḊ
AȦBḂ

(p, p′) = SCD
AB (p, p′)SĊḊ

ȦḂ
(p, p′) . (2.8)

It is important to note that a factorized tensor structure does not follow solely from the

PSU(2|2) × PSU(2|2) symmetry considerations. For example, it is in principle possible to

scatter a pair of excitations uncharged under the first PSU(2|2) in a singlet combination un-

der the second PSU(2|2) into a pair of excitations uncharged under the second PSU(2|2) in

a singlet combination under the first PSU(2|2). In fact, simple inspection of the gauge-fixed

Lagrangian yields no hint of the factorized structure (2.8). Confirming group factorization

is thus an important test of integrability.

Since only SU(2)×SU(2) ⊂ PSU(2|2) is a manifest symmetry of the gauge-fixed world-

sheet theory, S may be parametrized in terms of ten unknown functions of the momenta p

and p′ of the two incoming particles:6.

Scd
ab = A δc

aδ
d
b + B δd

aδc
b , S

γδ
ab = C εabε

γδ ,

S
γδ
αβ = D δγ

αδδ
β + E δδ

αδγ
β , Scd

αβ = F εαβεcd , (2.9)

Scδ
aβ = G δc

aδ
δ
β , S

γd
αb = L δγ

αδd
b ,

S
γd
aβ = H δd

aδγ
β , Scδ

αb = K δδ
αδc

b .

The first nontrivial order in the expansion of the S-matrix in the sigma-model coupling

constant 2π/
√

λ defines the T-matrix

�
= � +

2πi√
λ

�
+ O

(
1

λ

)
. (2.10)

The T-matrix should satisfy the classical limit of the YBE (cYBE). Among the restrictions

imposed by it is the requirement that the T-matrix inherits the factorized form from the

S-matrix:

�
= �⊗ T + T ⊗ � . (2.11)

5This can be understood as a requirement that the Faddeev-Zamolodchikov algebra is also a direct

product: the field ΦAȦ is represented by a bilinear in oscillators: ΦAȦ ∼ zAzȦ each transforming under

one of the PSU(2|2) factors. The two sets of oscillators mutually commute. The braiding relations for each

of these sets are determined by an PSU(2|2)-invariant S-matrix S consistent with the Lagrangian of the

theory.
6These definitions are similar but not identical to those of [12]. The relationship between the two

definitions is given in equation (6.15) below.
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The components of T are parametrized similar to (2.9) by

Tcd
ab = A δc

aδ
d
b + B δd

aδc
b , Tγδ

ab = C εabε
γδ ,

Tγδ
αβ = D δγ

αδδ
β + E δδ

αδγ
β , Tcd

αβ = F εαβεcd , (2.12)

Tcδ
aβ = G δc

aδ
δ
β , Tγd

αb = L δγ
αδd

b ,

Tγd
aβ = H δd

aδγ
β , Tcδ

αb = K δδ
αδc

b .

The relation with the coefficients appearing in S is given by an expansion similar to (2.10).

A puzzle. Before diffeomorphism and kappa gauge fixing the worldsheet theory is clas-

sically integrable; since fixing a unitary gauge may be interpreted as expanding around a

classical solution and solving some of the equations of motion, the gauge-fixed theory is

expected to be integrable at the classical level. As such, one is entitled to expect that it has

a two-particle factorized scattering matrix and that, despite the symmetry algebra being

centrally-extended [30], the symmetry transformations act on multi-excitation states via

the Leibniz rule.7 It is moreover usually the case that symmetries fix the tensor structure

of the scattering matrix.

Quite surprisingly, the situation at hand is somewhat different: under the assumption

of a Leibniz rule action on multi-particle states, the constraints imposed by the symmetry

algebra – while qualitatively consistent with the structure of the world sheet Lagrangian –

are not consistent with the explicit calculation of the S-matrix.

It appears therefore that the mere existence of a nontrivial (even momentum depen-

dent) center of the symmetry algebra is insufficient to explain the results of worldsheet

perturbation theory. The resolution of this puzzle relies on the observation that, even

though their action on fields appears at first sight to be local, the psu(2|2)2 generators

are in fact nonlocal objects. Consequently, their action is subtle and may not follow the

Leibniz rule. We will also argue that the nonlocal structure of the symmetry generators is

special and it is not affected by perturbative quantum corrections.

The tree-level S-matrix. The T-matrix can be explicitly calculated in perturbation

theory. In the gauge where J+ = (1 − a)J + aE is fixed8 and to leading order in 1/
√

λ we

7It is worth mentioning that all these expectations are realized in theories with centrally-extended

algebras – e.g. WZW models.
8Here E is the worldsheet energy and J is the angular momentum on S5. The constant a is a gauge

parameter, which allows one to interpolate between various gauges used in the literature.
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found

A(p, p′) =
1

4

[
(1 − 2a)

(
ε′p − εp′

)
+

(p − p′)2

ε′p − εp′

]
,

B(p, p′) = −E(p, p′) =
pp′

ε′p − εp′
,

C(p, p′) = F(p, p′) =
1

2

√
(ε + 1) (ε′ + 1) (ε′p − εp′ + p′ − p)

ε′p − εp′
, (2.13)

D(p, p′) =
1

4

[
(1 − 2a)

(
ε′p − εp′

)
− (p − p′)2

ε′p − εp′

]
,

G(p, p′) = −L(p′, p) =
1

4

[
(1 − 2a)

(
ε′p − εp′

)
− p2 − p′2

ε′p − εp′

]
,

H(p, p′) = K(p, p′) =
1

2

pp′

ε′p − εp′
(ε + 1) (ε′ + 1) − pp′√

(ε + 1) (ε′ + 1)
.

Here ε =
√

1 + p2 denotes the relativistic energy. The S-matrix is gauge-dependent, since

unlike the spectrum it is not a physical object with clear target-space interpretation. How-

ever, the S-matrix determines the spectrum via Bethe equations (at least asymptotically

for infinitely long strings) and its gauge-dependence should be simple enough for the solu-

tions of the Bethe equations to be gauge invariant. Indeed, in the class of gauges discussed

here, only the diagonal matrix elements are gauge-dependent. The differences between

different gauges can be attributed to the gauge dependence of the length of the string [11].

These two effects, the difference in the length and the gauge-dependence of the S-matrix,

mutually cancel in the Bethe equations [29, 37].

3. Hopf algebra

The solution to the puzzle described in the previous section and an explanation of the

results outlined there turns out to be quite interesting. At its foundation lies the fact that

mutual nonlocality of symmetry currents and fundamental fields leads to nontrivial effects

which introduce a natural ordering on the fixed-time spacial slices of the worldsheet. This

philosophy was applied extensively to the analysis of the nonlocal integrals of motion of

relativistic two-dimensional integrable field theories (see e.g. [38, 39]) where it was shown to

be equivalent to the YBE. Here we will identify a mild nonlocality of the Noether currents

of the psu(2|2)2 symmetry and analyze its consequences. We will argue that, in spite of

being arrived at through a classical treatment, the technique we use and the basic structure

of the result hold unmodified at the quantum level.

Quite generally, given a current J and a field Φ on a (1 + 1)-dimensional worldsheet,

their left- and right-multiplications are related by

JA
B(x)ΦC(y) = ΘACF

BDE ΦD(y)JE
F (x) if x > y , (3.1)

where Θ is usually called the braiding matrix. Obviously, if the current and the field are

mutually local the braiding matrix is trivial:

ΘACF
BDE = δA

EδC
DδF

B . (3.2)
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oo− oo+
yγ y

Figure 1: The contour γy for the action of the global charges Q(1) on a field inserted at the position

y.

oo+
Φ(y)

Cx

oo−oo+
Cx

oo−

Φ(y)

xt yt> yt xt>

J(x)

=
J(x)

x>y

Figure 2: Contour manipulations leading to nontrivial braiding in the product of mutually-nonlocal

fields.

However, if J and Φ are mutually nonlocal, then the braiding can be nontrivial. For ex-

ample, in virtually all theories exhibiting nonlocal conserved charges, the product between

the current J(2) whose conserved charge is the first nonlocal charge and the fundamental

field of the theory is

Ja
(2)(x)Φ(y) = Φ(y)Ja

(2)(x) − 1
2fabcQ̂b

(1)(Φ(y))Jc
(1)(x) for x > y , (3.3)

where a, b and c are adjoint indices, J(1) are the currents for global symmetries, fabc are

the structure constants of the corresponding symmetry group and Q̂(1)(Φ(y)) denotes the

usual action of the global symmetries on the fields Φ(y):

Q̂b
(1)(Φ(y)) =

∫

γy

dzJb
(1)(z)Φ(y) . (3.4)

Here the charges acting on fields are defined by integrating the forms dual to the currents

along a contour surrounding the point y and not simply along an equal-time slice. The

contour γy starts and ends at z = −∞ and encircles the point y (cf. figure 1). It is

important to note that as we are always considering conserved currents, ∂µJa
µ = 0, the

exact shape of the contour is irrelevant, or in other words, given that we are integrating

a closed form the result only depends weakly on the shape of the contour. To understand

the origin of the nontrivial braiding matrix Θ in (3.1) let us consider a current J whose

definition involves a choice of contour Cx starting at x = −∞ and ending at the location

of the current. For any field Φ, the product J(x)Φ(y) comes equipped with the natural

time-ordering that a field located to the left of another is also at a later time.9 Explicitly,

J(x)Φ(y) ≡ J(x, t + ε)Φ(y, t)
∣∣
ε→0

and similarly Φ(y)J(x) ≡ Φ(y, t + ε)J(x, t)
∣∣
ε→0

. In this

latter case one must make sure that the contour defining J(x) also sits in the past of Φ.

Let us then consider the left-hand side of (3.1), J(x)Φ(y) with x > y, and rearrange it

such that it is in the correct space-like and time-like order. The necessary transformations

are illustrated in figure 2. In this figure time runs upward. The left-hand side of figure 2

accounts for the spatial order Ja
(2)(x, t + ε)Φ(y, t) → Φ(y, t)Ja

(2)(x, t + ε). The contour Cx

9The reverse choice – that a field located to the left of another is also at an earlier time – may also be

made.
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must then be deformed to make sure that, as required by the fact that Φ is located to the

left of J , Φ(y) is always in the future of the contour defining J(x). The appearance of the

contour starting and ending at x = −∞ and encircling Φ(y) is at the origin of the braiding

matrix Θ; its precise expression depends on the details of the current J .

In local quantum field theories it is typically the case that the currents corresponding

to the global symmetries are local with respect to the fundamental fields of the theory and

thus do not exhibit any nontrivial braiding. This is equivalent to the fact that the action of

symmetry generators on fields is described by commutators. As we now describe, it turns

out that a notable exception to this rule is the worldsheet theory in light-cone gauge, where

the nonlocality is provided by the light-cone field x−.

The gauge-invariant Hamiltonian of the worldsheet sigma-model depends only on the

derivatives of x−; they are determined by the solutions of the constraints and so – order

by order in the number of fields – are local operators. As pointed out in [30] (see also

appendix B), the psu(2, 2|4) (super)currents whose supercharges generate psu(2|2)2 depend

on x− rather than its derivatives:

JQA
B

= eiσABx−/2J̃QA
B

σAB = [A] − [B] x−(x) =

∫

Cx

dw x́−(w) (3.5)

where J̃ is a local combination of the transverse fields and [A] denotes the grade of the

index A: [a] = 0, [α] = 1. The contour Cx starts at negative infinity and is the one on the

left-hand side of figure 2. Using the fact that the Virasoro constraints imply that

{x́−(w), Φ(y)} = i
2π√

λ
δ(w − y) Φ́(y) (3.6)

it is trivial to find, using the same contour manipulations as described in figure 2, that

JQA
B
(x)Φ(y) =

(
e
−πσAB√

λ
∂yΦ(y)

)
JQA

B
(x) for x > y . (3.7)

In this case the contour deformation is allowed because the integrand of the contour integral

is a total derivative.

To find the action of the global symmetry generators on a generic field Φ we use (3.4).

Integrating (3.7) the contour γz described in figure 1, restoring the indices (3.1) and using

the fact that this contour may be split as shown in figure 3 one immediately arrives at the

conclusion that the worldsheet supercharges belonging to psu(2|2)2 act as follows:

Q̂A
(1)B(ΦC(y)) = QA

(1)BΦC(y) −
(
e
−πσAB√

λ
∂yΦC(y)

)
QA

(1)B (3.8)

where Q(1) are the usual Noether charges associated to the currents JQA
B
.

QA
(1)B =

∫ ∞

−∞
dz JQA

B
(z) . (3.9)

Let us note that, had the eiσABx−/2 factor been absent from the Noether currents, the

equation (3.8) reduced to the usual Poisson bracket action of the Noether charge on fields.
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C z
oo− oo+

C z
oo− oo+

yC z
oo− oo+

y
+

y
=

Figure 3: Contour manipulations for the action of a charge on single field.

These arguments can easily be repeated recursively for multi-particle states. For our

purpose only two-particle states are of direct interest. Using the same logic as in [38] for the

bilocal charges of various integrable field theories, the action of supercharge on a product

of fields ΦC(x1)Φ
D(x2) requires picking a contour starting and ending at negative infinity

and encircling the points x1 and x2. The contour is then deformed to separate the action

on the two fields; the same arguments as above lead to

Q̂A
(1)B(ΦC(x)ΦD(x′)) = Q̂A

(1)B(ΦC(x))ΦD(x′) +
(
e
−πσAB√

λ
∂xΦC(x)

)
Q̂A

(1)B(ΦD(x′))(3.10)

From a formal algebraic standpoint, this action defines a nontrivial coproduct

∆(Q̂A
(1)B) = Q̂A

(1)B ⊗ � + e
−πσAB√

λ
∂x �⊗ Q̂A

(1)B (3.11)

thus promoting the psu(2|2)2 to a Hopf algebra (up to a definition of antipode and counit).

It is in fact easy to see that this coproduct is precisely that constructed from gauge theory

algebraic considerations in [40].10

This result represents the resolution of the puzzle described in the previous section.

Most importantly, equation (3.11) obviously implies that the psu(2|2) generators do not

act on products of fields following the Leibniz rule. It is with this coproduct action that

the result of the explicit calculation of the T has to be consistent. More precisely, defining

the S-matrix as an operator

S : Wp ⊗ Wp′ → Wp ⊗ Wp′ , (3.12)

the requirement of invariance under global symmetries translates into 11

(
�⊗ Q̂(1)

A
B + Q̂(1)

A
B ⊗ e

− iπσAB√
λ

p′ �
)

S = S

(
Q̂A

(1)B ⊗ � + e
− iπσAB√

λ
p�⊗ Q̂A

(1)B

)
(3.13)

In section 5.4 we will check, to leading order in the 1/
√

λ expansion, that this is indeed

so. As we will discuss shortly, the conservation of the nonlocal charges should also involve

a modified action.

It is worth noting that the details of the coproduct (3.11) depend on the choice of

gauge, in particular on the expression of x− in terms of the transverse fields. This is

one source of gauge-dependence of the worldsheet S-matrix and it is the reflection at the

algebraic level of the gauge dependence observed in its explicit calculation.

10A coproduct implementing the gauge theory symmetry algebra on two-particle spin chain states was

constructed in [41]. It is related to the one in [40] by a nonlocal field redefinition.
11It is worth noting that, taking expectation values of this equation between two-particle states (located,

respectively, t = +∞ and t = −∞), leads to the same constraints on the S-matrix as in the gauge theory

analysis.
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The arguments used above work just as well at the quantum level provided that no

nonlocal contributions to the global symmetry currents are generated by quantum correc-

tions. Assuming that perturbation theory in the light-cone gauge-fixed worldsheet theory

is well-defined, it is not hard to construct a two-step argument that this is indeed the case.

First, we notice that at any finite order in perturbation theory the relevant part of the La-

grangian is local and it does not depend on x− but only on its derivatives. Consequently,

the (finite or infinite) renormalization of the currents cannot involve x− and thus must be

local (in the sense that they do not require a choice of contour). The second observation

is that x− is the only field exhibiting nontrivial boundary conditions

x−(−∞) − x−(+∞) = pws . (3.14)

From this standpoint it behaves similarly to a soliton whose corresponding topological

charge is the worldsheet momentum. Since perturbative effects in a massive theory are

local, one may safely expect that they will not affect the action of x− on local fields.

Putting together these two pieces of argument we reach the conclusion that the struc-

ture (3.5) of the Noether supercurrents survives quantum corrections and consequently so

does the structure of the coproduct (3.11). Quantum corrections affect only the action

of the global charges on single fields Q̂A
(1)B(ΦC(xi)), which is braiding-independent when

evaluated on the vacuum.

While formally implying an agreement between gauge and string theory to all orders in

perturbation theory (up to gauge artifacts), the discussion above does not directly address

the consistency of the resulting S-matrix with integrability. One way to settle this issue

is to check whether the S-matrix commutes with the bilocal (and consequently with the

higher nonlocal) charge(s).

This is a cumbersome and tedious calculation and we will only briefly outline the

necessary steps for defining the action of bilocal charges on the asymptotic states leaving

the details of the calculation and the constraints following from them to the interested

reader. Evidence for the consistency of the Hopf algebra with integrability in specific

examples was previously discussed in e.g. [44]. There it was argued that, while the YBE

for the monodromy matrix was not modified, its logarithmic derivative (describing charge

conservation) is modified by the inclusion of braiding matrices similar to those in (3.17).

The origin of this modification was traced to the rules of differential calculus over the

quantum group. It is therefore reasonable to expect that if the asymptotic states form a

representation of the Hopf algebra, the YBE is satisfied. It would be interesting to see if

it is possible to choose states for the S-matrix described in [12].

As in the case of the conservation of global charges, the conservation of the first nonlocal

charge can be expressed as

lim
T→∞

〈A, p;B, p′|eiHT ∆(Q̂(2))|C, p;D, p′〉 = lim
T→∞

〈A, p;B, p′|∆(Q̂(2))e
iHT |C, p;D, p′〉 .(3.15)

where ∆(Q̂(2)) denotes the action of Q(2) on a product of two fields. For relativistic field

theories with local Noether currents it is known that this analysis leads to the same result

as the Yang-Baxter equation [42].
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To understand how the action of Q(2) is modified by the presence of the coproduct

(3.11) let us first recall that if J(1) denotes the generic global symmetry currents, the first

nonlocal charge is

(Q(2))
A

B =

∫ ∞

−∞
dx

∫ x

−∞
dy J(1)

A
0 C(x)J(1)

C
0 B(y) +

∫
dxΣA

B(x)

≡ (Qbil
(2))

A
B + (Qloc

(2))
A

B , (3.16)

where Σ is a functional of fields which may be determined by the requirement that Q(2)

is conserved. In the absence of kappa-gauge fixing and in conformal gauge Σ has a simple

expression in terms of the coset vielbein; classically, in a gauge-fixed framework it is a

combination of the space-like components of Noether currents. In a covariant quantization

framework it was argued that Σ exists at the quantum level [4].

The expressions of the global symmetry currents depend on the details of both the

kappa and diffeomorphism gauges and the expression of Σ inherits this dependence. As for

the case of massive relativistic field theories, it is natural to expect that the expression of

the bilocal part of Q(2) receives quantum corrections only through the quantum corrections

to the expressions of the global symmetry currents while the corrections to Σ however are

sensitive to the OPE of the global symmetry currents.

An interesting question is whether it is possible to truncate Q(2) such that it involves

only a subalgebra of the full symmetry algebra. Explicit calculation shows that their

conservation requires that the currents J(1) represent the complete symmetry algebra; it

does not seem possible to truncate J to a subalgebra of psu(2, 2|4) while maintaining

the conservation of Q(2). This appears to complicate the conservation equation (3.15),

since some of the generators of psu(2, 2|4) change the number of excitations of the state

they act on. Substantial simplification occurs however if we notice that such effects are

irrelevant if we pick two-excitation in- and out-states with both excitations belonging to

psu(2|2)2 ⊂ psu(2, 2|4). Indeed, states with more than two excitations – potentially created

by the action of the components of the currents outside psu(2|2)2 – are orthogonal on our

chosen out-state. Thus, for the purpose of evaluating the two sides of the equation (3.15)

it suffices to consider in (3.16) only the currents J(1) generating psu(2|2)2.
The bilocal charge exhibits two kinds on nonlocality and they must be properly taken

into account. First, since the currents appearing in Qbil
(2) are the global symmetry currents,

their x− dependence introduces a contour Cz similar to that on the left-hand side of figure 2.

Secondly, we have the inherent nonlocality of (3.16) which in the absence of the previous

contours leads to equation (3.3). The contour associated to the left-most current J0 in

(3.16) ends on this last contour.

Similarly to Q(1), one first finds the action of Q(2) on a single field. The result may

then be used to express as a coproduct the action of Q(2) on a product of two fields. The

contour manipulations lead to the following structure:

∆(Q̂(2)
A

B) = Q̂(2)
A

B ⊗ � + Ψ0
AD
BC ⊗ Q̂(2)

C
D + Ψ1

AD
BC ⊗ Q̂(1)

C
D (3.17)

where the formal braiding matrices Ψ0
AD
BC and Ψ1

AD
BC include further actions of the global

charges as well as of spatial derivatives.
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At the classical level, finding the action on states is in principle straightforward. This

action however receives quantum corrections and they are currently unknown. Nevertheless,

following the example of bosonic sigma-models [43], one may leave them arbitrary and

determine them consistently together with the S-matrix. We will however not pursue here

this direction and leave it for future work.

The algebraic structure uncovered in the beginning of this section, while of a rather

different origin, is similar to that of the gauge theory spin chain. The main difference related

to the fact that, even though in [30] the contribution of the zero-mode of x− to e±ix−/2

was identified as a length-changing operator, the factors e±ix−/2 in the supersymmetry

generators act directly on the oscillators building the state rather than by changing the

(already infinite) length of the string. In other words, they directly produce momentum-

dependent phase factors rather than insert length-changing markers denoted by Z± in [12].

Thus, the phases found on the world sheet are somewhat analogous to those appearing in

the nonlocal or cumulative notation of [13]. Indeed, the action of the supercharge on the

k-th factor in a product of fields will be multiplied by a phase depending on all momenta

of the excitations to the left of this excitation. In the other (twisted, in terminology of

[13]) realization of braiding, the Z± markers are crucial for the verification of the YBE as

well as for the derivation of the spin chain Bethe equations [12]. It is therefore interesting

to see how the Bethe equations arise on the worldsheet.

There is in fact a fairly straightforward procedure to reconstruct the nested Bethe

equations given the information already available. To this end it is useful to recall that

the usual procedure of constructing the Bethe equations starts with an arbitrary state and

imposes that the state is mapped into itself by the scattering of one excitation past all the

other ones. Enforcing this condition requires the diagonalization of a product of scattering

matrices which is, in fact, the multi-particle S-matrix. For this purpose one chooses an

arbitrary type of excitation and treats the states containing only this type of excitation as

a new vacuum state; the other excitations are interpreted as excitations above this level-2

vacuum. One then imposes the periodicity condition on these new states. These steps are

further repeated until all types of excitations are accounted for. In other words, at each

step in the construction of the nested Bethe equations one finds the multi-particle S-matrix

with respect to a new vacuum and sets its eigenvalues to unity.

In the presence of the coproduct (3.11), the knowledge of (almost) factorization of a

scattering matrix (such that the spin chain S-matrix) following from the YBE allows in

principle the construction of all the required multi-particle scattering matrices. The main

departure from the usual relation between two-particle and multi-particle S-matrices is

the need for additional phases depending on all the excitations building the state. Their

appearance can be justified by the fact that, while the 2-particle S-matrix depends only of

the two excitations being scattered, the coproduct introduces a phase depending on all the

excitation to their left. Thus, these additional phases must be explicitely included in the

relation between the multi-particle and two-particle S-matrices.
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4. Scattering of bosons

We start with the bosonic part of the sigma-model action:

Sσ =

√
λ

4π

∫
dτ

∫ π

−π
dσ

√
−hhabGMN∂aX

M∂bX
N , (4.1)

where X
M = (T,Φ, Y m, Zµ). The metric is taken from the equation (2.1). The worldsheet

metric hab has the signature (+−) and the Levi-Civita symbol εab, used later, is defined

such that ε01 = ε10 = 1.

4.1 The a-gauge

We consider the gauge in which the angular momentum is uniformly distributed along the

string, which is best suited for studying the near-BMN limit [27]. For various purposes

it is interesting to look at a one-parameter family of interpolating gauges introduced in

[35], which includes the uniform gauge from [27] and its light-cone modification [29] as

particular cases. The uniform momentum density in that gauge is associated with

J+ = (1 − a)J + aE (4.2)

The pure uniform gauge corresponds to a = 0, whereas a = 1/2 gives the light-cone gauge.

To find the gauge-fixed Lagrangian, we follow the procedure outlined in [45]: T-dualize

in the direction canonically conjugate to (4.2), integrate out the worldsheet metric, and fix

the gauge in the resulting Nambu-Goto action. The T-duality transformation is facilitated

by integrating in a field whose on-shell value is

Π
(cl)
a =

√
λ

2π

√
−h εabhbc [(1 − a)Gϕϕ ∂cΦ + aGtt ∂cT ] , (4.3)

so that

J+ =

∫ +π

−π
dσ Π

(cl)
1 . (4.4)

Adding

SΠ =
π√
λ

∫
d2σ

√
−hhab

(
Πa − Π

(cl)
a

)(
Πb − Π

(cl)
b

)

(1 − a)2Gϕϕ − a2Gtt
(4.5)

to the sigma-model action changes nothing since the additional term is quadratic in Πa.

On the other hand, addition of this term in conjunction with the linear field redefinition

T = X+ − a

1 − a
Φ (4.6)

eliminates the quadratic dependence on Φ, leaving only the linear term:

SΦ = − 1

1 − a

∫
d2σ εabΠa∂bΦ . (4.7)

Integrating out Φ imposes the constraint ∂aΠb − ∂bΠa = 0, which is solved by

Πa = ∂aΦ̃ . (4.8)
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Substituting this back into the action gives the sigma-model with the T-dual metric [46]:

G++ =
(1 − a)2GϕϕGtt

(1 − a)2Gϕϕ − a2Gtt
,

Gϕ̃ϕ̃ =
4π2

λ

1

(1 − a)2Gϕϕ − a2Gtt
, (4.9)

and the B-field

Bϕ̃+ =
2π√

λ

aGtt

(1 − a)2Gϕϕ − a2Gtt
. (4.10)

According to (4.8) and (4.4) the dual field satisfies the boundary condition

Φ̃(τ, σ + 2π) = Φ̃(τ, σ) + J+ . (4.11)

We can now start with the Nambu-Goto action in the T-dual coordinates:

SNG =

√
λ

2π

∫
d2σ LNG, (4.12)

LNG = −
√

− det
ab

GMN ∂aX̃M∂bX̃N − 1

2
εabBMN∂aX̃

M∂bX̃
N , (4.13)

where X̃
M = (X+, Φ̃, Y m, Zµ). The natural gauge condition, consistent with (4.11), is

X+ =
τ

1 − a
, Φ̃ =

J+σ

2π
. (4.14)

After imposing this gauge condition it is convenient to rescale σ by J+/
√

λ, so that the

worldsheet coordinate changes in the interval −πJ+/
√

λ < σ ≤ πJ+/
√

λ. Then J+/
√

λ

appears only in the length of the string and
√

λ/2π enters only as an overall factor in front

of the action. We shall further consider the limit J+/
√

λ → ∞, in which the worldsheet be-

comes an infinite plane and the dependence on J+ completely disappears. 2π/
√

λ remains,

as a loop counting parameter.

After all the rescalings, the gauge-fixed Lagrangian does not depend on any parameters

at all:

Lg.f. = −
√

GϕϕGtt

(1 − a)2Gϕϕ − a2Gtt

{
1 − (1 − a)2Gϕϕ − a2Gtt

2

×
[(

1 +
1

GϕϕGtt

)
∂aX · ∂aX −

(
1 − 1

GϕϕGtt

)(
Ẋ · Ẋ + X́ · X́

)]

+

[
(1 − a)2Gϕϕ − a2Gtt

]2

2GϕϕGtt

[
(∂aX · ∂aX)2 − (∂aX · ∂bX)2

]}1/2

+
a

1 − a

Gtt

(1 − a)2Gϕϕ − a2Gtt
.

(4.15)

Here, the index contractions on X = (Y m, Zµ) are done with the metric (2.1). Finally, to

the quartic order in the fields we get:

L =
1

2
(∂aX)2 − 1

2
X2 +

1

4
Z2 (∂aZ)2 − 1

4
Y 2 (∂aY )2 +

1

4

(
Y 2 − Z2

) (
Ẋ2 + X́2

)

− 1 − 2a

8

(
X2

)2
+

1 − 2a

4
(∂aX · ∂bX)2 − 1 − 2a

8

[
(∂aX)2

]2
.

(4.16)

– 16 –



J
H
E
P
0
3
(
2
0
0
7
)
0
9
4

Here, unlike in (4.15), target-space indices are contracted with the flat Euclidian metric.

The quadratic part of the Lagrangian is 2d Lorentz invariant and SO(8) symmetric. These

symmetries are broken by the interaction terms, many of which however preserve SO(8)

and/or Lorentz invariance. In particular the gauge-dependent part of the Lagrangian is

Lorentz and SO(8) invariant. This part disappears at a = 1/2, which reflects relative

simplification of the string action in the light-cone gauge [35]. The full action in any

a-gauge is only invariant under so(4)2 = su(2)4.

4.2 S-matrix

Computing the tree-level S-matrix for the Lagrangian (4.16) is a fairly straightforward

exercise. The calculation can be done by applying LSZ reduction to the quartic vertices in

(4.16), which produces various tensor structures with the SO(4)2 indices. At the end we

want to transform the SO(4)2 vector indices into the SU(2)4 spinor notations according to

(2.3), which in effect trades combinations of δν
µ and δn

m for combinations of δβ
α, δβ̇

α̇, δb
a and

δḃ
ȧ. The basic SU(2)-invariants are the the identity and the permutation operators:

�cd
ab = δd

b δc
a , P cd

ab = δc
bδ

d
a , (4.17)

and analogous operators acting on the dotted indices. The T-matrix acts in the tensor

product and we will use the notations like �⊗ P , P ⊗ � or P ⊗ P to denote permutations

that act on dotted, undotted or both types of indices. Written in the SO(4)2 notations,

these operators parameterize all possible combinations of the SO(4) indices that arise in

the scattering amplitudes:

(�⊗ P + P ⊗ �)mn
kl = δm

k δn
l + δm

l δn
k − δmnδkl ,

(P ⊗ P )mn
kl = δm

l δn
k , (4.18)

(�⊗ �)mn
kl = δm

k δn
l .

With the use of these formulas we find:

�
Y Y →Y Y =

1

2

[
(1 − 2a)(ε′p − εp′) +

(p − p′)2

ε′p − εp′

]
�⊗ � +

pp′

ε′p − εp′
(�⊗ P + P ⊗ �) ,

�
ZZ→ZZ =

1

2

[
(1 − 2a)(ε′p − εp′) − (p − p′)2

ε′p − εp′

]
�⊗ �− pp′

ε′p − εp′
(�⊗ P + P ⊗ �) ,

�
ZY →ZY =

1

2

[
(1 − 2a)(ε′p − εp′) +

p2 − p′2

ε′p − εp′

]
,

�
ZY →Y Z = 0 ,

�
ZZ→Y Y = 0 . (4.19)

The (bosonic) T-matrix appears to have a factorized form (2.11). We should emphasize

that this is a result of very delicate cancelations among different diagrams. From (4.19)

we can extract coefficients A, B, D, E, G and L in (2.12), see (2.13). C, F, H, and K only

appear in the scattering of fermions.
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4.3 Absence of particle production

In this section we offer some arguments for the factorization of the bosonic S-matrix beyond

leading order, in particular the absence of 2 → 4 particle production at tree level and the

corresponding factorization of the 3 → 3 tree level amplitude. It is well known that the

factorization of the S-matrix follows from the selection rules that the number of particles

of a given mass is unchanged and that the final momenta are the same as the initial ones,

see for example [47]. It is straightforward to keep higher terms in the expansion of the

light-cone Lagrangian provided we restrict our attention to the bosonic part. Using the

uniform light-cone gauge a = 1
2 for convenience we find the Lagrangian density describing

only fields on the S5

Llc = PyẎ −Hlc (4.20)

= −1

2

(
−Ẏ 2 + Ý 2 + Y 2

)
+

1

2
√

λ
Y 2Ý 2

+
1

32λ

(
−Y 2Ý 4 + Y 4Ẏ 2 − Y 2Ẏ 4 − Ý 2(9Y 4 + 2Y 2Ẏ 2) + 4Y 2(Ẏ · Ý )2

)
+ . . .

and the analogous Lagrangian density for fields on the AdS5 is

Llc = −1

2

(
−Ż2 + Ź2 + Z2

)
− 1

2
√

λ
Z2Ź2 (4.21)

+
1

32λ

(
−Z2Ź4 + Z4Ż2 − Z2Ż4 − Ź2(9Z4 + 2Z2Ż2) + 4Z2(Ż · Ź)2

)
+ . . .

The dots refer to terms of higher order in 1/
√

λ. The mixed terms can also be easily found

but we do not record them here. We further restrict our attention to two directions on the

sphere, Y 5, Y 6, and consider the scattering of the complex coordinate Y = 1
2 (Y 5 + iY 6).

The vertices for the above interactions are given by

p
3

p
4

p
1

p
2

=
−i√

λ
(p1 + p2)(p3 + p4) (4.22)

p
1

p
3

p
2

p
6

p
5

p
4

=
i

32λ

[
8(ε1ε2 + ε1ε3 + ε2ε3 − (p1p2 + p1p3 + p2p3))×
(ε4ε5 + ε4ε6 + ε5ε6 − (p4p5 + p4p6 + p5p6)) (4.23)

+8(ε1 + ε2 + ε3)(ε4 + ε5 + ε6) − 64(p1 + p2 + p3)(p4 + p5 + p6)
]

where the two-momenta are the pairs (εi, pi). The contributions to the 2 → 4 scattering

involving two four-vertices are given by

A(4, 5, 6) :
1√
λ

(
(p1 + p2)

2(p5 + p6)
2

(ε1 + ε2 − ε4)2 − (p1 + p2 − p4)2 − 1

)
+ (4 ↔ 5) + (4 ↔ 6) (4.24)

B(4, 5, 6) :
1√
λ

(
(p1 − p3)

2(p5 + p6)
2

(ε1 − ε3 − ε4)2 − (p1 − p3 − p4)2 − 1

)
+ (4 ↔ 5) + (4 ↔ 6) (4.25)
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Figure 4: Three of the diagrams contributing to 2 → 4 scattering.

C(4, 5, 6) :
1√
λ

(
(p2 − p3)

2(p5 + p6)
2

(ε1 − ε5 − ε6)2 − (p1 − p5 − p6)2 − 1

)
+ (4 ↔ 5) + (4 ↔ 6) (4.26)

and from the six-vertex we get the contribution

D :
i

32λ
(8(ε1ε2 − ε1ε3 − ε2ε3 − (p1p2 − p1p3 − p2p3)) ×

(ε4ε5 + ε4ε6 + ε5ε6 − (p4p5 + p4p6 + p5p6))

−8(ε1 + ε2 − ε3)(ε4 + ε5 + ε6) + 64(p1 + p2 − p3)(p4 + p5 + p6)) . (4.27)

We can now (analytically and numerically) check that A(4, 5, 6) + B(4, 5, 6) + C(4, 5, 6) +

(4 ↔ 5) + (4 ↔ 6) + D = 0 for generic values of the external momenta. We can see

this explicitly in some simple cases; for example set p1 = −p2, p5 = −p6. In this case

p3 = −p4 and ε1 = ε3 + ε5 (on-shell εi =
√

1 + p2
i ) and we can see that all diagrams of

type A vanish as do B(4, 5, 6) and C(4, 5, 6). The remaining contribution from B(5, 6, 4),

B(6, 5, 4), C(5, 6, 4) and C(6, 5, 4) can be simplified using

p5 =

((√
1 + p2

1 −
√

1 + p2
3

)2

− 1

) 1
2

(4.28)

to

− i√
λ

(
p4
1 + (p2

1 + 3p2
3) + p2

1(p
3
3 − 2ε1ε3)

)
. (4.29)

Using energy and momentum conservation it is straightforward to show that the six-vertex

gives the negative of this result. We can also examine the case when all the momenta are

much larger than the mass and again p1 = −p2 in this case εi ' |pi| and by examining

specific cases it is straightforward to see that the 2 → 4 amplitude vanishes. Thus we have

shown complete cancellation between the diagrams for 2 → 4 scattering.

In fact we have shown more than the absence of particle production, if we consider

3 → 3 scattering we find the exact same cancellations as above except for the special
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kinematical region where the outgoing momenta are equal to the incoming. In this case

the internal propagator in the two vertex diagrams become singular giving an amplitude

which splits into a finite part canceled by the six-vertex term and momentum δ-function.

Hence we also see the factorization of the 3 → 3 tree level amplitude into 2 → 2 events

which in this case is equivalent to the absence of particle production.

We should mention that the authors of [29] were able to construct a unitary trans-

formation which, quite generically, removed particle producing terms from the light-cone

Hamiltonian. The existence of such a transformation does not require any particular sym-

metries of the Hamiltonian but only relies upon the existence of the quantum theory and

the non-zero mass of the free particles. Indeed the remaining terms in the Hamiltonian can

have quite generic coefficients and so in this case the absence of particle production does

not seem to necessarily imply the factorization of multi-particle scattering processes. This

is an important distinction as it is this factorization which is equivalent to the existence of

higher conserved charges and so integrability.

5. Scattering of fermions

5.1 Physical degrees of freedom

We now turn to the scattering of fermions. For the sake of simplicity we shall only consider

the uniform light-cone gauge that corresponds to a = 1/2 in (4.2). The results for the

constant-J gauge (a = 0) are displayed in appendix B. The degrees of freedom that are

left after fixing the uniform light-cone gauge are given by the fields Yaȧ, Zαα̇, Ψaα̇ and Υαȧ.

See section 2 and table 1 for more details.

We use northeast-southwest conventions to raise and lower su(2) indices

xa = εabxb , xa = xbεba , (5.1)

where ε12 = ε12 = 1, and likewise for all other indices. Also complex conjugation changes

the position of the index, e.g. (Yaȧ)
∗ ≡ Y ∗aȧ. It is important not to confuse this with

Y ∗
aȧ ≡ Y ∗bḃεbaεḃȧ. Moreover, the bosonic fields satisfy the reality condition

Y ∗
aȧ = Yaȧ and Z∗

αα̇ = Zαα̇ . (5.2)

5.2 Action and quantization

For the superstring calculation in uniform light-cone gauge, we use the action derived in

[29]. In appendix C we rewrite this action in a second order formalism and obtain

S =
√

λ

∞∫

−∞

dτ

πJ+/
√

λ∫

−πJ+/
√

λ

dσ

2π
L (5.3)
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with

L0 = str

[
1

4
ẊẊ − 1

4
X́X́ − 1

4
XX − i

2
Σ+χχ̇ − 1

2
Σ+χχ́\ − 1

2
χχ

]
,

Lint = − 1

8
str Σ8XX str X́X́

+
1

8
str χχ́χχ́ +

1

8
str χχχ́χ́ +

1

16
str[χ, χ́][χ\, χ́\] +

1

4
str χχ́\χχ́\

− 1

8
str Σ8XX str χ́χ́ +

1

4
str[X, X́ ][χ, χ́] + str Xχ́Xχ́

+
i

8
str[X, Ẋ ][χ\, χ́] − i

8
str[X, Ẋ ][χ, χ́\] .

(5.4)

The conjugation χ\ as well as the constant matrices Σ+ and Σ8 are defined in the ap-

pendix C. This action contains only the physical fields introduced above. They are written

as elements of two SU(2, 2|4) supermatrices. The bosons are contained in

X =




0 0 +Z34̇ +iZ33̇ 0 0 0 0

0 0 +iZ44̇ −Z43̇ 0 0 0 0

−Z43̇ −iZ33̇ 0 0 0 0 0 0

−iZ44̇ +Z34̇ 0 0 0 0 0 0

0 0 0 0 0 0 +iY 12̇ −Y 11̇

0 0 0 0 0 0 −Y 22̇ −iY 21̇

0 0 0 0 −iY 21̇ +Y 11̇ 0 0

0 0 0 0 +Y 22̇ +iY 12̇ 0 0




, (5.5)

and the fermions in

χ = e
iπ
4




0 0 0 0 0 0 +Υ 32̇ +iΥ 31̇

0 0 0 0 0 0 +iΥ 42̇ −Υ 41̇

0 0 0 0 +iΨ∗23̇ −Ψ∗13̇ 0 0

0 0 0 0 −Ψ∗24̇ −iΨ∗14̇ 0 0

0 0 +Ψ14̇ +iΨ13̇ 0 0 0 0

0 0 +iΨ24̇ −Ψ23̇ 0 0 0 0

−iΥ ∗41̇ +Υ ∗31̇ 0 0 0 0 0 0

+Υ ∗42̇ +iΥ ∗32̇ 0 0 0 0 0 0




. (5.6)

Plugging in these expression, the free part of the Lagrangian becomes

L0 = + 1
2 Ẏ ∗

aȧẎ
aȧ − 1

2 Ý ∗
aȧÝ

aȧ − 1
2Y ∗

aȧY
aȧ

+ 1
2 Ż∗

αα̇Żαα̇ − 1
2 Ź∗

αα̇Źαα̇ − 1
2Z∗

αα̇Zαα̇

+ iΨ∗
aα̇Ψ̇aα̇ − i

2 (Ψ∗
aα̇Ψ́∗aα̇ + Ψaα̇Ψ́aα̇) − Ψ∗

aα̇Ψaα̇

+ iΥ ∗
αȧΥ̇

αȧ − i
2(Υ ∗

αȧΎ
∗αȧ + ΥαȧΎ

αȧ) − Υ ∗
αȧΥ

αȧ .

(5.7)
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The corresponding equations of motion are solved by the following mode expansion:

Yaȧ(~x) =

∫
dp

2π

1√
2ε

(
aaȧ(p) e−i~p·~x + a†aȧ(p) e+i~p·~x

)
, (5.8)

Zαα̇(~x) =

∫
dp

2π

1√
2ε

(
aαα̇(p) e−i~p·~x + a†αα̇(p) e+i~p·~x

)
, (5.9)

Ψaα̇(~x) =

∫
dp

2π

1√
ε

(
baα̇(p)u(p) e−i~p·~x + b†aα̇(p) v(p) e+i~p·~x

)
, (5.10)

Υαȧ(~x) =

∫
dp

2π

1√
ε

(
bαȧ(p)u(p) e−i~p·~x + b†αȧ(p) v(p) e+i~p·~x

)
, (5.11)

where the energy is ε =
√

1 + p2, the wave functions are

u(p) = cosh θ
2 , v(p) = sinh θ

2 (5.12)

and the rapidity θ is defined through p = sinh θ. The scalar product in the exponentials is

~p · ~x = ετ + pσ. The canonical commutation relations are given by

[aaȧ(p), a†
bḃ

(p′)] = 2π δa
b δȧ

ḃ
δ(p − p′) , {baα̇(p), b†

bβ̇
(p′)} = 2π δa

b δα̇
β̇

δ(p − p′) ,

[aαα̇(p), a†
ββ̇

(p′)] = 2π δα
β δα̇

β̇
δ(p − p′) , {bαȧ(p), b†

βḃ
(p′)} = 2π δα

β δȧ
ḃ

δ(p − p′) . (5.13)

The above choice of labeling the modes has some very nice features. Firstly, bosons and

fermions are treated identically. All indices are carried by the mode operators. The wave

functions are scalar functions and no Dirac matrices are required. Secondly, particles and

anti-particles can be considered at once without notational differences. The particle/anti-

particle relationship is determined by which pair of oscillators occurs in the expansion of one

field. Looking, for example, at the field Yaȧ (for fixed a and ȧ), we see that the oscillator

a†aȧ creates the “anti-excitation” of the “excitation” that is destroyed by the oscillator

aaȧ. Note, however, that these two oscillators do not form a canonical pair. Rather a†aȧ

and aaȧ = εabεȧḃabḃ are conjugate to each other as it can be seen from the commutation

relations. This is after all a consequence of (aaȧ)∗ = a†aȧ. It is interesting to observe the

different origin of the latter relation for bosons and fermions. For the bosons is originates

from the reality condition (5.2). The fermions Ψaα̇ and Ψ∗
aα̇, however, are independent. In

this case it is the equations of motion which require (baα̇)∗ = b†aα̇.

5.3 Tree-level S-matrix

We compute the (65536) components of the T-matrix as defined in (2.7) and (2.10), relying

only on the manifest SU(2)4 symmetry. There are four kinds of particles that we can

scatter: Yaȧ, Zαα̇, Ψaα̇, Υαȧ. Let us consider the scattering two Y ’s. There are four

different channels, which can be found by taking the tensor product of the corresponding

representations, cf. table 1:

(2,2,1,1) ⊗ (2,2,1,1) = (3,3,1,1) ⊕ (3,1,1,1) ⊕ (1,3,1,1) ⊕ (1,1,1,1) . (5.14)

These four representations can be realized by the following states12

12The brackets { } and [ ] denote symmetrization and anti-symmetrization of two undotted or two dotted

indices. The prime is written to distinguish different particle momenta.
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(3,3,1,1) (3,1,1,1) (1,3,1,1) (1,1,1,1)

|Y{a{ȧY
′
b}ḃ}〉 |Y{a[ȧY

′
b}ḃ]〉 |Y[a{ȧY

′
b]ḃ}〉 |Y[a[ȧY

′
b]ḃ]

〉
|Ψ{a[α̇Ψ ′

b}β̇]
〉 |Υ[α{ȧΥ

′
β]ḃ}〉 |Ψ[a[α̇Ψ ′

b]β̇]
〉

|Υ[α[ȧΥ
′
β]ḃ]

〉
|Z[α[α̇Z ′

β]β̇]
〉

Hence the action of the T-matrix is of the form

� |YaȧY
′
bḃ
〉 = + # |Y{a{ȧY

′
b}ḃ}〉 + # |Y{a[ȧY

′
b}ḃ]〉 + # |Y[a{ȧY

′
b]ḃ}〉 + # |Y[a[ȧY

′
b]ḃ]

〉

+ # 1
2εȧḃε

α̇β̇|Ψ{a α̇Ψ ′
b}β̇ 〉 + # 1

2εabε
αβ|Υα{ȧΥ

′
β ḃ}〉

+ # 1
2εȧḃε

α̇β̇|Ψ[a α̇Ψ ′
b]β̇

〉 + # 1
2εabε

αβ|Υα[ȧΥ
′
β ḃ]

〉

+ # 1
4εȧḃεabε

α̇β̇εαβ |Zαα̇Z ′
ββ̇
〉 .

(5.15)

The explicit computation yields

� |YaȧY
′
bḃ
〉 =

1

ε′p − εp′

[
1
2

(
(p − p′)2 + 4pp′

)
|Y{a{ȧY

′
b}ḃ}〉

+ 1
2 (p − p′)2

(
|Y{a[ȧY

′
b}ḃ]〉 + |Y[a{ȧY

′
b]ḃ}〉

)

+ 1
2

(
(p − p′)2 − 4pp′

)
|Y[a[ȧY

′
b]ḃ]

〉

− 2pp′ sinh θ−θ′

2

(
1
2εȧḃε

α̇β̇|Ψ{a α̇Ψ ′
b}β̇ 〉 + 1

2εabε
αβ |Υα{ȧΥ

′
β ḃ}〉

+ 1
2εȧḃε

α̇β̇|Ψ
[a α̇

Ψ ′
b]β̇

〉 + 1
2εabε

αβ |Υ
α[ȧ

Υ ′
β ḃ]

〉
)]

,

which simplifies to

� |YaȧY
′
bḃ
〉 =

1

2

(p − p′)2

ε′p − εp′
|YaȧY

′
bḃ
〉 +

pp′

ε′p − εp′
(
|Y

aḃ
Y ′

bȧ〉 + |YbȧY
′
aḃ
〉
)

− pp′

ε′p − εp′
sinh

θ − θ′

2

(
εȧḃε

α̇β̇ |Ψaα̇Ψ ′
bβ̇
〉 + εabε

αβ|ΥαȧΥ
′
βḃ
〉
)

.

(5.16)

The bosonic part reproduces, of course, the computation in section 4 for a = 1
2 . Notice

that the coefficients are such that the states on the right hand side do not differ in both

undotted and dotted indices from the in-state on the left hand side. Such terms would

prevent group-factorization (2.11) of the T-matrix.

The other components of
�

are listed in appendix D. The entire result can be written

concisely by giving the coefficient functions as defined in (2.12) for one psu(2|2) factor. We
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find13

A(p, p′) = −D(p, p′) =
1

4

(p − p′)2

ε′p − εp′
,

B(p, p′) = −E(p, p′) =
pp′

ε′p − εp′
,

C(p, p′) = +F(p, p′) = − pp′

ε′p − εp′
sinh

θ − θ′

2
, (5.17)

G(p, p′) = −L(p, p′) = −1

4

p2 − p′2

ε′p − εp′
,

H(p, p′) = +K(p, p′) =
pp′

ε′p − εp′
cosh

θ − θ′

2
.

In order to compare with the form in section 2, note the following kinematical identities

1

2

√
(ε + 1) (ε′ + 1)

(
ε′p − εp′ + p′ − p

)
= −pp′ sinh θ−θ′

2 , (5.18)

1

2

(ε + 1) (ε′ + 1) − pp′√
(ε + 1) (ε′ + 1)

= cosh θ−θ′

2 . (5.19)

5.4 Symmetries

The string states are constructed from oscillators that individually do not satisfy the level-

matching condition (i.e. they carry nonvanishing worldsheet momentum). In this sense

they can be considered off-shell. The symmetry algebra in the absence of the level-matching

constraint in the uniform light-cone gauge-fixed theory is psu(2|2)L × psu(2|2)R n �2 [30].

The total momentum is measured by an operator P which appears as one of the central

generators of the symmetry algebra. The other central generator is the total energy H.

In [30] the symmetry generators were found in term of the worldsheet fields. We would

like to act with the symmetry generators on the scattering states; consequently, we need to

know the oscillator representation of the symmetry generators. Since the nonlocal nature

of the symmetry generators has already been taken into account, it suffices to focus on

their local part. In the notation of section 3 this corresponds to analyzing the currents

generically denoted by J̃ in equation (3.5). Computing the integrals along fixed-time slices,

the oscillator representation of the generators of psu(2|2)L is (to quadratic order)

La
b =

∫
dp

2π

1

2

[
c†
aĊ

cbĊ − c†bĊ caĊ

]
, Qα

b =

∫
dp

2π
(−)[Ċ]

[
u c†

αĊ
cbĊ − v c†bĊ cαĊ

]
,

Rα
β =

∫
dp

2π

1

2

[
c†
αĊ

cβĊ − c†βĊ cαĊ

]
, Sa

β =

∫
dp

2π
(−)[Ċ]

[
u c†

aĊ
cβĊ − v c†βĊ caĊ

]
,

the generators of psu(2|2)R are

L̇ȧ
ḃ =

∫
dp

2π

1

2

[
c†Cȧ cCḃ − c†Cḃ cCȧ

]
, Q̇α̇

ḃ =

∫
dp

2π

[
u c†Cα̇ cCḃ − v c†Cḃ cCα̇

]
,

Ṙα̇
β̇ =

∫
dp

2π

1

2

[
c†Cα̇ cCβ̇ − c†Cβ̇ cCα̇

]
, Ṡȧ

β̇ =

∫
dp

2π

[
u c†Cȧ cCβ̇ − v c†Cβ̇ cCȧ

]
,

13Notice that there arise signs when T acts across a fermionic index:�
|ΦAȦΦ′

BḂ
〉 = (−)[Ȧ]([B]+[D]) |ΦCȦΦ′

DḂ
〉TCD

AB + (−)[B]([Ȧ]+[Ċ]) |ΦAĊΦ′
BḊ

〉TĊḊ

ȦḂ
.
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and the two dentral charge generators generators read

P =

∫
dp

2π
p c†

AȦ
cAȦ , H =

∫
dp

2π
ε c†

AȦ
cAȦ .

As before we have

u = cosh θ
2 , v = sinh θ

2 , p = sinh θ , ε = cosh θ . (5.20)

These formulas give the oscillator representation of the centrally extended psu(2|2)2 alge-

bra. Since Q and S transform as the components of a Lorentz spinor [48], one can see

from this form that this representation is related to a representation of the non-centrally

extended algebra (P = 0) by a Lorentz boost. Recall that the free worldsheet Lagrangian

indeed possesses Lorentz invariance.

The algebra. The generators P and H are the two central charges corresponding to total

momentum and total energy of a representation. The rotation generators Rα
β and La

b act

onto a generic generator J canonically as

[La
b,Jc] = δb

c Ja − 1
2δb

a Jc , [La
b,Jc] = −δc

a Jb + 1
2δb

a Jc , (5.21)

[Rα
β ,Jγ ] = δβ

γ Jα − 1
2δβ

α Jγ , [Rα
β ,Jγ ] = −δγ

α Jβ + 1
2δβ

α Jγ . (5.22)

The supercharges satisfy

{Qα
a,Qβ

b} = −1
2εαβεab P , (5.23)

{Sa
α,Sb

β} = −1
2εabε

αβ P , (5.24)

{Qα
a,Sb

β} = δβ
α Lb

a + δa
b Rα

β + 1
2δβ

αδa
b H . (5.25)

Here we have the same central charge appearing in the anticommutator of Q and S with

itself. This is due to the quadratic approximation made here. Including higher orders,

one would find that the two central charges (both denoted here by P) are the complex

conjugate of each other. The generators of psu(2|2)R obey identical algebra relations.

Single excitation representation. If we act with the supercharges defined above on a

single oscillator, we find

L̇ȧ
ḃ|c†ċ〉 = δḃ

ċ |c†ȧ〉 − 1
2δḃ

ȧ|c†ċ〉 , Ṙα̇
β̇ |c†γ̇〉 = δβ̇

γ̇ |c
†
α̇〉 − 1

2δβ̇
α̇|c

†
γ̇〉 , (5.26)

Q̇α̇
ḃ|c†ċ〉 = u δḃ

ċ |c†α̇〉 , Q̇α̇
ḃ|c†γ̇〉 = −v εα̇β̇εḃċ|c†ċ〉 , (5.27)

Ṡȧ
β̇|c†ċ〉 = −v εȧḃε

β̇γ̇ |c†γ̇〉 , Ṡȧ
β̇ |c†γ̇〉 = u δβ̇

γ̇ |c
†
ȧ〉 , (5.28)

where the undotted indices remain unaffected and have been suppressed. This is the same

representation as for a single excitation of the spin chain [12]. Comparing the two cases,

we see that the coefficients a, b, c, d of [12] take the values a = d = u and b = c = −v. Note

that indeed ad − bc = 1 (required by the closure of the algebra), 1
2 (ad + bc) = 1

2ε (first

central charge) and ab = cd = −1
2p (two more central charges).
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Invariance of the T-matrix. With the ingredients described above we can now verify

that the tree-level worldsheet S-matrix derived in section 5.3 is invariant under psu(2|2)2
transformations with the the coproduct action (3.11):

[Qα
b ⊗ F + F ⊗ Qα

b,T] = +(1
2PF) ⊗ Qα

b − Qα
b ⊗ (1

2PF) (5.29)

[Sa
β ⊗ F + F ⊗ Sa

β,T] = −(1
2PF) ⊗ Sa

β + Sa
β ⊗ (1

2PF) (5.30)

where F acts as F|c†A〉 = (−)[A]|c†A〉. These equations arise from the expansion of (3.13)

at large ’t Hooft coupling; the terms appearing on the right hand side of these equations

are a direct consequence of the non-trivial co-product for the action of the supercharges on

multi-excitation states , cf. section 3.

6. Comparison with SYM

As we have mentioned previously the S-matrix of planar N = 4 SYM can be constructed

by using the fact that a choice of ferromagnetic spin chain vacuum state breaks the full

psu(2, 2|4) to its psu(2|2)2 subgroup. However this novel spin chain is ”dynamic” in the

sense that the number of lattice sites can change. This induces two additional central

charges shared by both factors of the symmetry group.

For the spin chain, the scattering processes φaφb → ψαψβ and ψαψβ → φaφb involve the

creation or annihilation of a vacuum lattice site, denoted by Z±, and it is these insertions

which give rise to the non-trivial coproduct for the global charges in the spin chain (see

[49],[41]) while at the same time being responsible for the appearence of the central charges.

The S-matrix of [12] for a single SU(2|2) sector involving the scalar fields, φa, and the

fermions, ψα with a, α = 1, 2, is uniquely determined up to an overall phase by demanding

that the S-matrix is invariant under the action of the su(2|2) algebra where the generators

act on the fields as:

La
b|φc〉 = δb

c|φa〉 − 1
2δb

a|φc〉 , Rα
β|ψγ〉 = δβ

γ |ψα〉 − 1
2δβ

α|ψγ〉 , (6.1)

Qα
b|φc〉 = a δb

c|ψα〉 , Qα
b|ψγ〉 = b εαβεbc|φcZ+〉 , (6.2)

Sa
β|φc〉 = c εabε

βγ |ψγZ−〉 , Sa
β|ψγ〉 = d δβ

γ |φa〉 ; (6.3)

and the extra central charges P and K required by the presence of the length-changing

operators Z± act as

P|χ〉 = ab |χZ+〉 , K|χ〉 = cd |χZ−〉 . (6.4)

When these generators act on multi-particle states the Z± operators introduce additional

momentum-dependent phases which promote this algebra to a Hopf subalgebra.

The resulting S-matrix is given by

SB |φaφ
′
b〉 = AB |φ′

{aφb}〉 + BB |φ′
[aφb]〉 + 1

2C
Bεabε

αβ |ψ′
αψβZ−〉 , (6.5)

SB|ψαψ′
β〉 = DB |ψ′

{αψβ}〉 + EB |ψ′
[αψβ]〉 + 1

2F
Bεαβεab|φ′

aφbZ+〉 , (6.6)

SB |φaψ
′
β〉 = GB |ψ′

βφa〉 + HB|φ′
aψβ〉 , (6.7)

SB |ψαφ′
b〉 = KB |ψ′

αφb〉 + LB|φ′
bψα〉 , (6.8)
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with the coefficients

AB = S0
pp′

x+
p′ − x−

p

x−
p′ − x+

p
,

BB = S0
pp′

x+
p′ − x−

p

x−
p′ − x+

p


1 − 2

1 − 1
x+

p x−
p′

1 − 1
x+

p x+
p′

x−
p′ − x−

p

x+
p′ − x−

p


 ,

CB = S0
pp′

2γpγp′

x+
p x+

p′

1

1 − 1
x+

p x+
p′

x−
p′ − x−

p

x−
p′ − x+

p
,

DB = −S0
pp′,

EB = −S0
pp′


1 − 2

1 − 1
x−

p x+
p′

1 − 1
x−

p x−
p′

x+
p′ − x+

p

x−
p′ − x+

p


 ,

FB = −S0
pp′

2

γpγp′x
−
p x−

p′

(x+
p − x−

p )(x+
p′ − x−

p′)

1 − 1
x−

p x−
p′

x+
p′ − x+

p

x−
p′ − x+

p
,

GB = S0
pp′

x+
p′ − x+

p

x−
p′ − x+

p
, HB = S0

pp′
γp

γp′

x+
p′ − x−

p′

x−
p′ − x+

p
,

KB = S0
pp′

γp′

γp

x+
p − x−

p

x−
p′ − x+

p
, LB = S0

pp′
x−

p′ − x−
p

x−
p′ − x+

p
, (6.9)

where

γp = |x−
p − x+

p |
1/2

(6.10)

and

x±
p =

πe±
i
2 p

√
λ sin p

2

(
1 +

√
1 +

λ

π2
sin2 p

2

)
. (6.11)

As mentioned before, the phase factor S0 is undetermined by the algebraic construction.

The one that correctly reproduces the semiclassical string spectrum via Bethe equations

[3] is

S0
pp′ =

1 − 1
x+

p′
x−

p

1 − 1
x−

p′
x+

p

eiθ(p,p′) (6.12)

with the dressing phase given by [15] (to the leading order in 1/
√

λ)

θ(p, p′) =

√
λ

2π

∑

r,s=±
rs χ(xr

p, x
s
p′),

χ(x, y) = (x − y)

[
1

xy
+

(
1 − 1

xy

)
ln

(
1 − 1

xy

)]
. (6.13)

In the comparison with the worldsheet calculation we are actually interested in the

coefficients of PgP
u
pp′S

B , where Pg is the graded permutation operator and P u
pp′ exchanges
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the excitation momenta. Furthermore, in order to find the S-matrix for the full PSU(2, 2|4)
theory we use the relation14,

�
=

1

AB
SB ⊗ SB ,

�CĊDḊ
AȦBḂ

(p, p′) =
1

AB
(SB)CD

AB (p, p′)(SB)ĊḊ
ȦḂ

(p, p′) . (6.14)

Consequently we can relate the above coefficients to those of S used in section 2

A = 1

2
√

AB
(AB −BB) , B = 1

2
√

AB
(AB + BB) , C = 1√

AB
CB ,

D = 1

2
√

AB
(−DB + EB) , E = 1

2
√

AB
(−DB − EB) , F = − 1√

AB
FB ,

G = 1√
AB

GB , H = 1√
AB

HB ,

L = 1√
AB

LB , K = 1√
AB

KB . (6.15)

In order to compare our worldsheet results with those of the spin chain S-matrix of

[12] we must expand the latter in 1/
√

λ. But first we should understand how the spin

chain momenta are related to the worldsheet momenta. As part of the gauge fixing of the

worldsheet theory we chose the density of the light-cone momentum to be a constant which

in turn fixed the string length to be J = 2πJ+/
√

λ where J+ is the momentum. Then, we

took J to be infinite, which allowed for a sensible definition of the S-matrix, and expanded

in powers of 2π√
λ

which acts as a loop counting parameter. This should be contrasted with

the spin chain whose length L is identified with the momentum J plus an additional term

that depends on the number of excitations15: L = J +M . Going from the spin chain to the

string worldsheet involves the rescaling by a factor of
√

λ/2π, which affects all dimensional

quantities and in particular all momenta in (6.9), which should be rescaled as

p −→ 2πp√
λ

pchain =
2π√

λ
pstring . (6.16)

Indeed, once we impose the periodic boundary conditions, the spin chain momentum is

quantized in the units of 2π/J , while in the sigma-model the momentum quantization

unit is
√

λ/J . We should therefore first rescale as above all momenta in the spin chain

S-matrix and then expand it in 1/
√

λ. The matrix elements in (6.9) depend on 1/
√

λ only

through x±
p . Therefore, the strong-coupling expansion is equivalent to the low-momentum

expansion of the spin chain S-matrix. For the kinematical variables (6.11) the rescaling of

momenta yields:

x±
p =

1 + ε

p

(
1 ± iπp√

λ
+ O

(
1

λ

))
. (6.17)

Note that in the limit we are considering here all information about bound states appears

at higher orders in the 1/
√

λ expansion.

14The full S-matrix has to be divided by AB, because the psu(2|2) S-matrix was defined in [12] as the

physical scattering matrix of the fields ΦA1̇. In addition to S for the left psu(2|2) indices, the scattering of

this field receives contribution from S
1̇1̇
1̇1̇

= AB .
15Various excitations contribute differently to the length, see [6] for the precise definition. For the sake

of our argument, it is enough to known that J → ∞ and M = O(1) in the decompactification limit. The

difference between L and J then becomes negligible.
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The expansion of (6.9)–(6.13) in 1/
√

λ is a tedious but straightforward exercise. The

small-momentum expansion of the dressing phase (6.13) was computed in [22]:

θ(p, p′) = − 2π√
λ

(1 + ε)
(
1 + ε′

) ∂2χ

∂x∂y

∣∣∣∣
x= 1+ε

p
, y= 1+ε′

p′

=
2π√

λ

1
2 (p − p′)2 − (p − p′)(ε′p − εp′) + 1

2(ε′p − εp′)2

ε′p − εp′
. (6.18)

Expanding the matrix elements we find for the components (2.12) of the T-matrix:

A(p, p′) =
1

4

[(
ε′p − εp′

)
− 2(p − p′) +

(p − p′)2

ε′p − εp′

]
,

B(p, p′) = −E(p, p′) =
pp′

ε′p − εp′
,

C(p, p′) = F(p, p′) =
1

2

√
(ε + 1) (ε′ + 1) (ε′p − εp′ + p′ − p)

ε′p − εp′
, (6.19)

D(p, p′) =
1

4

[(
ε′p − εp′

)
− (p − p′)2

ε′p − εp′

]
,

G(p, p′) = −L(p′, p) =
1

4

[(
ε′p − εp′

)
+ 2p′ − p2 − p′2

ε′p − εp′

]
,

H(p, p′) = K(p, p′) =
1

2

pp′

ε′p − εp′
(ε + 1) (ε′ + 1) − pp′√

(ε + 1) (ε′ + 1)
.

This should be compared with the string calculation in the constant-J gauge given in (2.13)

for a = 0. We note that the results almost agree, the only difference being terms which

are linear in the momenta. These terms should not affect the physical spectrum when

the S-matrix is plugged into the asymptotic Bethe equations. We suspect that when the

linear terms are promoted to the linear phases in the exact S-matrix, they account for the

difference between the length of the spin chain and the internal length of the string. This

can be seen most clearly in the rank-one sectors; for example, the bosonic su(2) sector of

the spin chain is described by the Bethe equation

eiLpi =

M∏

j 6=i

SB
su(2)(pi, pj). (6.20)

The string length is proportional to the R-charge J , but for the spin chain the length is

L = J + M , where M is the number of impurities. In order to compare with the string

theory we must rewrite the equation as

eiJpi =
M∏

j 6=i

SB
su(2)(pi, pj)e

i(pj−pi). (6.21)

Thus there are new terms in the S-matrix, which after the rescaling described above,

contribute terms linear in momentum at order 1/
√

λ. The appropriate change in length

is different for the various impurities and one should carefully trace through the effects in
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the Bethe equations to see exactly how the string and spin chain S-matrices are related,

which is beyond the scope of the present paper.

If, instead of (6.12), we take

S0
pp′ = ei p−p′

2 , (6.22)

we find the resulting T-matrix is given by

A(p, p′) =
1

4

(p − p′)2

ε′p − εp′
,

B(p, p′) = −E(p, p′) =
pp′

ε′p − εp′
,

C(p, p′) = F(p, p′) =
1

2

√
(ε + 1) (ε′ + 1) (ε′p − εp′ + p′ − p)

ε′p − εp′
, (6.23)

D(p, p′) =
1

4

[
2(p − p′) − (p − p′)2

ε′p − εp′

]
,

G(p, p′) = −L(p′, p) =
1

4

[
2p′ − p2 − p′2

ε′p − εp′

]
,

H(p, p′) = K(p, p′) =
1

2

pp′

ε′p − εp′
(ε + 1) (ε′ + 1) − pp′√

(ε + 1) (ε′ + 1)
.

This agrees with the string calculation in the light-cone gauge (a = 1/2), again up to terms

linear in momenta.

7. Conclusions and discussion

The gauge-fixed sigma-model in AdS5×S5 is a rather complicated 2d quantum field theory.

Even at tree level, the calculations of the finite-size spectrum in [27] and of the S-matrix

here involve complicated combinatorics. We have analyzed the latter calculation in detail

and explicitly shown that the scattering matrix has all the required factorization properties

consistent with integrability. A crucial ingredient was the fact that the action of the

symmetry algebra on multi-particle states is given by a nontrivial coproduct.

A similar (albeit not identical) nonstandard realization of the symmetry algebra occurs

on the gauge theory side of the duality [12]. Though different, these nonstandard realiza-

tions are crucial for the positive comparison of the worldsheet and the spin chain picture

of the dual SYM theory. The difference we noted between the realization of symmetries

can therefore be identified as a gauge degree of freedom. Indeed, there appears to exist a

nonlocal field redefinition [40] that relates the two coproducts.

It would be very interesting to extend our calculations to include loop effects. Such a

calculation would provide further nontrivial checks on standing conjectures regarding the

S-matrices appearing in the context of the AdS/CFT correspondence. As mentioned above,

at least one nonlocal field redefinition is necessary to directly identify at the classical level

the fields and the algebraic structures on the two sides of the duality. Such redefinitions

have the potential of altering the quantum theories. It is thus not immediately obvious

which worldsheet one should use for computing quantum corrections to the scattering
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matrix. A possible guide is provided by the symmetry algebra described in section 3.

There we argued that perturbative quantum corrections cannot alter the coproduct derived

classically. Imposing this as a constraint on the definition of the quantum theory may

uniquely identify it. Higher loop corrections in this theory should reproduce the higher

order terms in the 1/
√

λ expansion of the spin chain S-matrix described in section section 6.

Two important issues that we have not discussed here are crossing symmetry and

analyticity of the S-matrix. While the former is a kinematical restriction, the analytic

properties of the S-matrix contain information about the spectrum of bound states of

the theory. In the bootstrap approach to integrable relativistic quantum field theories

these properties are very important, along with the quantum Yang-Baxter equation, in

determining the S-matrix (up to a smooth phase) and the spectrum [47].

The AdS/CFT sigma-model in the light-cone (or any other unitary) gauge lacks rela-

tivistic invariance. This is reflected in the structure of the S-matrix, which depends on the

individual momenta of the incoming particles rather than on their particular combination

such as the difference of rapidities in relativistic theories. Nevertheless, based on algebraic

considerations, the S-matrix of AdS/CFT was conjectured to satisfy a crossing relation

[14]. Recalling that in relativistic quantum field theory the crossing symmetry is a simple

consequence of the Feynman rules [50] and noting that two-dimensional Lorentz invariance

is only broken spontaneously on the worldsheet, it is not unnatural to hope that diagram-

matic perturbation theory of the type used in this paper may be helpful in understanding

the behavior of the S-matrix under particle-antiparticle transformation. A different per-

spective on the connection with the crossing symmetry of relativistic field theories may be

provided by the construction of [51].

Comparatively little is known about the analytic properties of the S-matrix. According

to the standard bootstrap philosophy, bound states of the theory correspond to (complex)

simple poles of the scattering matrix16. While the physical meaning of some higher order

poles is known, an interpretation of more serious singularities of a two-dimensional S-

matrix is currently lacking. Our tree-level calculation of the S-matrix does not yield direct

information on its analytic structure. In particular, the two-magnon bound state present in

the gauge theory spin chain exhibits, in our expansion, a difference of order i/
√

λ between

the corresponding world sheet momenta of its constituents; thus, it must be a quantum

effect and should be accessible only after the perturbative series is (partly) resumed. An

efficient way to gain access to the analytic structure of the S-matrix at the classical level

is the analysis of the scattering of worldsheet solitons. In the limit of small charges and

small momenta, the 1/
√

λ expansion of the soliton S-matrix reduces – in the appropriate

gauge – to the results of perturbative calculations of the type described here.
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A. Symmetry considerations

As mentioned in section 2 the gauge-invariant worldsheet theory as well as the worldsheet

theory in conformal gauge are classically integrable. Formally, one may think of gauge-

fixing the diffeomorphism invariance as equivalent with expanding around some classical

solution; for the light-cone gauge this is the BMN point-like string [52] combined with

solving a subset of the classical equations of motion. It is therefore reasonable to expect

that diffeomorphism-gauge-fixed worldsheet theory remains integrable. κ-symmetry gauge-

fixing cannot be understood in a similar language; however, in explicit examples, it is

possible to see that integrability is preserved.

Furthermore, there exist known examples in which despite the symmetry algebra being

centrally-extended [30], the symmetry transformations act on multi-excitation states via

the Leibniz rule. It is worth stressing that virtually in all known continuum integrable

models this expectation is in fact realized and it relies only on the fact that in a quantum

theory operators act via commutators.

Additionally, one may expect [42, 43] that the S-matrix is determined up to a phase

by the symmetries of the theory, in particular the nonlocal symmetries and it again turns

out that this expectation is realized in most existing integrable field theories.

A.1 Leibniz rule and symmetry constraints

Under the assumption that the global symmetries act following the Leibniz rule it is quite

trivial to impose their conservation in the scattering process. For this purpose we need

some sufficiently general action on single excitations. Denoting by BC(p) the creation

operators, the symmetry generators QA
(1)B

17 act on these excitations as

{Q(1)
A

B , BC(p)} = {Q(1)
A

B, BC(p)}0

+ EAC
− E+BD{c,BD(p)} + EAC

+ E−BD{c∗, BD(p)} .
(A.1)

where E± are defined as

E+ =

(
εab 0

0 0

)
, E− =

(
0 0

0 εαβ

)
, I+ =

(
�2 0

0 0

)
, I− =

(
0 0

0 �2

)
(A.2)

and have we introduced I± for later convenience.

In the equation (A.1)

{Q(1)
A

B , BC(p)}0 = fAC
BD(p)BD(p) , {c,BC(p)}0 = c(p)BC(p) (A.3)

17Here Q(1) uniformly covers both the bosonic and the fermionic psu(2|2) generators.
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represent the action of symmetry generators in the absence of the central extension and

of the central charge, respectively. The coefficients fAC
BD(p) have manifest su(2) ⊕ su(2)

symmetry and may be written as

fAC
BD(p) =

(
I+

C
BI+

A
D − 1

2I+
A
BI+

C
D

)
+

(
I−

C
BI−

A
D − 1

2I−
A
BI−

C
D

)

+ a(p)I−
A
DI+

C
B + d(p)I+

A
DI−

C
B .

(A.4)

The functions c(p), a(p) and d(p) are determined by the worldsheet sigma-model together

with its Poisson structure. The momentum displayed as their argument is that of the

excitation the generators act on.

Among the many consequences of the vanishing of the commutation of the S-matrix

and the psu(2|2) generators are

C(p, p′) =
1

2a(p)

[
c(p′)L(p, p′) − c(p)H(p, p′) −

(
D(p, p′) − E(p, p′)

)
c∗(p′)

]

= − 1

2a(p′)

[
c(p′)K(p, p′) − c(p)G(p, p′) +

(
D(p, p′) − E(p, p′)

)
c∗(p)

]
(A.5)

F(p, p′) =
1

2d(p)

[
c∗(p′)G(p, p′) − c∗(p)K(p, p′) −

(
A(p, p′) −B(p, p′)

)
c(p′)

]

= − 1

2d(p′)

[
c∗(p′)H(p, p′) − c∗(p)L(p, p′) +

(
A(p, p′) − B(p, p′)

)
c(p)

]
. (A.6)

The conservation of the first nonlocal charge provides further constraints on the scat-

tering matrix which may be derived by considering the conservation of the first nonlocal

charge in the scattering process. As we discuss in more detail in section 3, under the as-

sumption that the psu(2|2) generators act following the Leibniz rule, general considerations

[53] imply that the action of the bilocal charge on 2-particle states is

Q(2)
S

T |ΦA(p)〉 ⊗ |ΦB(p′)〉 =
(
Q(2)

S
T |ΦA(p)〉

)
⊗ |ΦB(p′)〉

+ |ΦA(p)〉 ⊗
(
Q(2)

S
T |ΦB(p′)〉

)

+
(
Q(1)

S
M |ΦA(p)〉

)
⊗

(
Q(1)

M
T |ΦB(p′)〉

)
(A.7)

It is somewhat less trivial to extract information that is not already included in the conser-

vation of the global symmetry generators18. It is however easy to argue on general grounds

that, in the presence of the central charges, the conservation of Q(2)

SQ(2)|ΦA(p)ΦB(p′)〉 = Q(2)S|ΦA(p)ΦB(p′)〉 (A.8)

that the C(p, p′) and/or F(p, p′) be nonvanishing.

Indeed, one may break the action of Q(2) into two parts, with even and odd parity in

flavor space and similarly for the S-matrix:

Q(2) = Qeven
(2) + Qodd

(2) , S = Seven + Sodd . (A.9)

18This is so because it necessarily requires knowledge of the action of the bilocal charge on single-particle

states.
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The odd-parity component of (A.8)

[Qodd
(2) ,Seven] + [Qeven

(2) ,Sodd] = 0 (A.10)

is then an inhomogeneous linear equation for the unknown functions C(p, p′) and F(p, p′)
with the inhomogeneous term provided by the central charges of the algebra. It is worth

pointing out that the nontriviality of this equation arises from the fact that the structure

functions (A.3) are momentum-dependent. This departs from previous analyses of the

relation between the Yang-Baxter equation and nonlocal integrals of motion.

While this discussion was rather qualitative, it points to the possibility that the La-

grangian, the centrally-extended psu(2|2)2 symmetry and existence of nonlocal charges

have a chance of being consistent with each other in the context of the assumptions listed

here. A more detailed analysis shows that to find exact agreement one must also include

the effects of the non-trivial coproduct as was described in section 3.

B. Scattering of fermions in constant-J light-cone gauge

In this appendix we will consider the superstring in the constant-J light-cone gauge and

show that up to terms linear in momenta the S-matrix is that of ref. [12] when we choose

the overall phase factor to be that conjectured by AFS [15]. We start with the light-cone

Hamiltonian described in [27], restrict to a SU(2|2) sector and calculate the S-matrix for

this subsector. For the constant-J gauge we introduce the light-cone coordinates

x+ = t , x− = φ − t (B.1)

and fix the gauge,

x+ = τ , p− = 1 , Γ+θ = 0 (B.2)

where p− is the light-cone momentum density, θ is a complex positive chirality spinor and

ΓA are the ten dimensional Dirac matrices. The light-cone Lagrangian is written in terms

of the physical fields which are the eight bosons zi, i = 1, . . . , 4, yi′ , i′ = 5, . . . , 8 and the

eight component spinors ψ and ψ†. The fermions further break into ψ̂ and ψ̃ which are

even or odd under the action of Π = γ1γ2γ3γ4 where the γi are the 8 × 8 γ-matrices:

Πψ̂ = ψ̂, Πψ̃ = −ψ̃. (B.3)

The spinors ψ̂ transform in the (1, 2; 1, 2) of the SU(2)4, while ψ̃ transform as (2, 1; 2, 1).

In what follows we will restrict our attention to the yi′ bosons and the ψ̃ fermions. The

relevant part of the Lagrangian (dropping the tilde on the ψ) is L = L0 + Lint, where,

L0 =
1

2

(
ẏ2 − ý2 − y2

)
+ iψ†ψ̇ +

i

2
(ψψ́ + ψ†ψ́†) + ψ†ψ (B.4)

and Lint = LBB + LFF + LBF with

LBB =
1√
λ

[
−1

2
y2ý2 +

1

8
(y2)2 − 1

8

(
(ẏ2)2 + 2ẏ2ý2 + (ý2)2

)
+

1

2
(ý · ẏ)2

]
(B.5)
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LFF = − 1

4
√

λ

[
−i

[
(ψ́ψ) + (ψ́†ψ†)

]
(ψ†ψ) − 1

2
(ψ́ψ + ψ́†ψ†)2

+
1

2

(
(ψ†ψ́) − (ψ́†ψ)

)2
+

i

12
(ψγjkψ†)(ψ†γjkψ́†)

+
i

48
(ψγjkψ + ψ†γjkψ†)(ψ́†γjkψ − ψ†γjkψ́) − (j, k ⇔ j′k′)

]
(B.6)

LBF =
1√
λ

[
− i

4
[ẏ2 + ý2 + y2](ψψ́ + ψ†ψ́†) − i

2
(ẏ · ý)(ψ†ψ́ + ψψ́†)

−1

2
ý2(ψ†ψ) − i

4
(ýj′yk′)(ψγj′k′

ψ + ψ†γj′k′
ψ†)

+
1

4
(ẏj′ ýk′

)(ψγj′k′
ψ − ψ†γj′k′

ψ†)

]
. (B.7)

To properly identify the SU(2|2) sector it is necessary to identify how the fields trans-

form under the SU(2)2 symmetries. We will use the representation for the 8×8 γ-matrices

γ1 = ε × ε × ε γ5 = τ3 × ε × �
γ2 = �× τ1 × ε γ6 = ε × �× τ1 (B.8)

γ3 = �× τ3 × ε γ7 = ε × �× τ3

γ4 = τ1 × ε × � γ8 = �× �× �

with

ε =

(
0 1

−1 0

)
, τ1 =

(
0 1

1 0

)
, τ3 =

(
1 0

0 −1

)
. (B.9)

The generators of the four SU(2) factors symmetry can be expressed as 8×8 SO(8) matrices:

Σ±
1 = − 1

4i
(γ2γ3 ± γ1γ4) Ω±

1 =
1

4i
(−γ6γ7 ± γ8γ5)

Σ±
2 = − 1

4i
(γ3γ1 ± γ2γ4) Ω±

2 =
1

4i
(−γ7γ5 ± γ8γ6) (B.10)

Σ±
3 = − 1

4i
(γ1γ2 ± γ3γ4) Ω±

3 =
1

4i
(−γ5γ6 ± γ8γ7) .

and we can rewrite the fermions ψ̃ in the (2, 1; 2, 1) representation in a notation closer to

that used previously, e.g. section 5,

ψ̃ =
1

2




−Υ42̇ + Υ31̇

−i(Υ32̇ − Υ41̇)

i(Υ32̇ − Υ41̇)

−Υ42̇ + Υ31̇

−i(Υ42̇ + Υ31̇)

−Υ32̇ − Υ41̇

−Υ32̇ − Υ41̇

i(Υ42̇ + Υ31̇)




, ψ̃† =
1

2




−Υ ∗
42̇

+ Υ ∗
31̇

−i(Υ ∗
32̇

− Υ ∗
41̇

)

i(Υ ∗
32̇

− Υ ∗
41̇

)

−Υ ∗
42̇

+ Υ ∗
31̇

−i(Υ ∗
42̇

+ Υ ∗
31̇

)

−Υ ∗
32̇

− Υ ∗
41̇

−Υ ∗
32̇

− Υ ∗
41̇

i(Υ ∗
42̇

+ Υ ∗
31̇

)




. (B.11)
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The Υαȧ transform non-trivially under the SU(2)’s generated by Σ+, which acts on the

undotted index, and Ω+, which acts on the dotted index. We will be interested in the Υα1̇

which have Ω+
3 charge −1

2 . Using the corresponding action of the SU(2) generators on the

y bosons transforming as (1, 1; 2, 2):

Ω+
1 =

1

2i




0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0


 Ω−

1 =
1

2i




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0




Ω+
2 =

1

2i




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


 Ω−

2 =
1

2i




0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0




Ω+
3 =

1

2i




0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0


 Ω−

3 =
1

2i




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0


 (B.12)

and we can introduce the following complex bosons:

Y 11̇ =
1√
2

(
y5 − iy6

)
, Y 22̇ =

1√
2

(
y5 + iy6

)
,

Y 12̇ =
−1√

2

(
y7 + iy8

)
, Y 21̇ =

−1√
2

(
y7 − iy8

)
. (B.13)

The action of the SU(2) generators is a little complicated but we will be only interested in

the bosons with Ω+
3 charge −1

2 , that is Y11̇ and Y21̇ and these satisfy

Ω−
+ Y21̇ = Y11̇ , Ω−

− Y11̇ = Y21̇ . (B.14)

In this notation the free part of the Lagrangian takes a similar form to that in (5.7)

L0 = + 1
2 Ẏ ∗

aȧẎ
aȧ − 1

2 Ý ∗
aȧÝ

aȧ − 1
2Y ∗

aȧY
aȧ

+ iΥ ∗
αȧΥ̇

αȧ + i
2(Υ ∗

αȧΎ
∗αȧ + ΥαȧΎ

αȧ) + Υ ∗
αȧΥ

αȧ .
(B.15)

and so the equations of motion can be solved by a similar mode expansion:

Yaȧ(~x) =

∫
dp

2π

1√
2ε

(
aaȧ(p) e−i~p·~x + a†aȧ(p) e+i~p·~x

)
, (B.16)

Υαȧ(~x) =

∫
dp

2π

1√
2ε

(
bαȧ(p)u(p) e−i~p·~x + b†αȧ(p) v(p) e+i~p·~x

)
, (B.17)

Υ ∗
αȧ(~x) =

∫
dp

2π

1√
2ε

(
bαȧ(p) v(p) e−i~p·~x + b†αȧ(p)u(p) e+i~p·~x

)
. (B.18)

The energy is still ε =
√

1 + p2 but the wave functions are slightly different than previously

v(p) =
√

2 cosh θ
2 , u(p) = −

√
2 sinh θ

2 . (B.19)
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The rapidity θ is still defined through p = sinh θ and the scalar product in the exponentials

is ~p · ~x = ετ + pσ. The canonical commutation relations are given, as before, by

[aaȧ(p), a†
bḃ

(p′)] = 2π δa
b δȧ

ḃ
δ(p − p′) , {baα̇(p), b†

bβ̇
(p′)} = 2π δa

b δα̇
β̇

δ(p − p′) ,

[aαα̇(p), a†
ββ̇

(p′)] = 2π δα
β δα̇

β̇
δ(p − p′) , {bαȧ(p), b†

βḃ
(p′)} = 2π δα

β δȧ
ḃ

δ(p − p′) . (B.20)

We focus on the fields Ya1̇ and Υα1̇ which comprise a closed SU(2|2) subsector of the full

theory and which makes comparison with Beisert’s S-matrix most transparent. Parame-

terizing the T-matrix as

T|Ya1̇Y
′
b1̇
〉 = A(p, p′)|Ya1̇Y

′
b1̇
〉 + B(p, p′)|Yb1̇Y

′
a1̇
〉 + C(p, p′)εabε

αβ|Υα1̇Υ
′
β1̇
〉 (B.21)

T|Ya1̇Υ
′
β1̇
〉 = G(p, p′)|Ya1̇Υ

′
β1̇
〉 + H(p, p′)|Υβ1̇Y

′
a1̇
〉 (B.22)

T|Υα1̇Y
′
b1̇
〉 = K(p, p′)|Yb1̇Υ

′
α1̇
〉 + L(p, p′)|Υα1̇Y

′
b1̇
〉 (B.23)

T|Υα1̇Υ
′
β1̇
〉 = D(p, p′)|Υα1̇Υ

′
β1̇
〉 + E(p, p′)|Υβ1̇Υ

′
α1̇
〉 + F(p, p′)εαβεab|Ya1̇Y

′
b1̇
〉 , (B.24)

we find

A(p, p′) =
1

2

[
ε′p − εp′ +

p′2 + p2

ε′p − εp′

]
, (B.25)

B(p, p′) = E(p, p′) =
pp′

ε′p − εp′
, (B.26)

C(p, p′) = F(p, p′) = −1

2

√
(ε + 1)(ε′ + 1) (ε′p − εp′ + p′ − p)

ε′p − εp′
, (B.27)

D(p, p′) =
1

2

[
ε′p − εp′ − 2pp′

ε′p − εp′

]
, (B.28)

G(p, p′) = L(p′, p) =
1

2

[
ε′p − εp′ +

(p + p′)p′

ε′p − εp′

]
, (B.29)

H(p, p′) = K(p, p′) =
1

2

pp′

ε′p − εp′
(ε + 1)(ε′ + 1) − pp′√

(ε′ + 1)(ε + 1)
. (B.30)

We note that in this case, as we are explicitly restricting our fields to lie in a single su(2|2)
rather than calculating the factorized T-matrix, there is no additional 1

2 (A − B) (�⊗ �)
which must be included to get the expressions used in section 2. There is an ambiguity

in the sign of F which is due to the choice of the fermion ordering; here we have used the

convention

|Υα1̇Υ
′
β1̇
〉 = b†

α1̇
b′†
β1̇
|J+〉 (B.31)

and so it follows from the hermiticity of the Hamiltonian that F = C. These expressions are

in good agreement with the gauge theory, there are of course the terms linear in momenta

which are presumably related to the difference between the definition of the string length

and that of the gauge theory spin chain.

Now, we construct the supersymmetry generators in this su(2|2) sector. The analogous

calculation for the uniform gauge was explicitly carried out in [30] and we will here repeat
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their calculation for the constant-J gauge, at least to lowest order. We will start with the

Noether currents corresponding to left multiplication in the gauge unfixed theory and give

expressions in terms of all ten bosonic coordinates, xµ, and the sixteen component complex

spinor θ. We can then gauge fix these currents to find their action on the physical fields

which are scattered by the S-matrix. The Noether currents are given by j = p + ∗q + ∗q̄
where

j = g(x, θ) J g(x, θ)−1

= g(x, θ)
(
LAPA + ∗LαQα + ∗L̄αQ̄α

)
g(x, θ)−1 (B.32)

and g(x, θ) = exp(1
2(x+P− +x−P+))exp(xIP I)exp(θQ̄+ θ̄Q). For compactness it is useful

to define θαFα = θαQ̄α + θ̄αQα and introduce the quantities

πA(θ) = eθF PAe−θF

= πB
APA + πα

AFα and

πα(θ) = eθF Fαe−θF

= πB
α PA + πβ

αFβ (B.33)

so that

j = g(x)
((

LAπB
A + ∗LαπB

α

)
PB +

(
LAπβ

A + ∗Lαπβ
α

)
Fβ

)
g(x)−1. (B.34)

Now, using the usual trick of scaling the fermions, θ → tθ, taking the derivative and

integrating using the boundary conditions

πA
B(t = 0) = δA

B πα
A(t = 0) = 0

πA
α (t = 0) = 0 πα

β (t = 0) = δα
β (B.35)

we can find the closed expressions

πA
B = cos

(√
αβ

)
, πα

A =
sin

√
βα√

βα
β (B.36)

πA
α = −sin

√
αβ√

αβ
α πβ

α = cos
√

βα (B.37)

with the short hand

βα
A = fα

γAθγ , αA
β = θγfA

γβ (B.38)

and the f
(C,γ)
(A,α)(B,β) are the psu(2, 2|4) structure constants. We are particularly interested

in the current corresponding to the conserved charges Q− = 1
2 γ̄+γ−Q so we consider the

truncation

Q̄− = j|Q−

=
1

2
exp

(−ix−Π

2

)
exp

(
ixI

2
γ̄0Πγ̄I

)
(πα

ALA + πα
β ∗ L) . (B.39)
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We have used the psu(2, 2|4) algebra, in particular the relation

[Q,Pµ] =
i

2
Qγ̄0Πγ̄µ, Π = γ1γ̄2γ3γ̄4 . (B.40)

which implies for our choice of coset representative that

g(x)Q−g(x) = 1
2Q− exp

(−ix−Π

2

)
exp

(
ixI

2
γ̄0Πγ̄I

)
. (B.41)

The most important result is the occurrence of the ei x−Π
2 factor in the definition of the

Noether current. As discussed in section 3 it is this factor which is responsible for the non-

trivial coproduct and hence the non-trivial realization of integrability. It is worth noting

that this factor does not occur in the pp-wave background as there [P+, Q−] = 0. In order

to get manageable expressions and to check that we have sensible results we expand the

time component of the current in powers of the physical fields and keep only the lowest,

quadratic, part

πβ
α = δβ

α , π̄α
A = − i

2
γ̄0Πγ̄Aθ̄

L+ = 2dx+ , LI = dxI , L = dθ + idx+Πθ (B.42)

Q̄−
0 = e

−ix−Π
2 e

ixI γ̄0Πγ̄I

2
(
π̄α

ALA
0 + πα

β L1

)

= − i

2
e
−ix−Π

2 Π(pI γ̄I θ̄ − ixI γ̄IΠθ̄ + xI γ̄I θ́) (B.43)

which we can compare with the results of Metsaev for the total charge [24] (up to an overall

normalization)

Q̄−
p.p. =

∫
dσ

(
pI γ̄I θ̄ − ixI γ̄IΠθ̄ − x́I γ̄Iθ

)
(B.44)

and which agrees with our result if we drop the ei x−Π
2 and integrate the last term by

parts; there is of course a similar expression for the conjugate supercharge. It is inter-

esting to further note that even in the plane-wave geometry there is a central extension

of the psu(2, 2|4) algebra as can be easily seen if we calculate the Poisson bracket of two

holomorphic or anti-holomorphic supercharges

tr{Q−, Q−} ∝
∫

dσ
(
pI x́I + iθ̄θ́

)

= −
∫

dσ x́− (B.45)

using the constraint equation in the last line. However in the plane wave limit there

is no non-trivial coproduct as there is no non-local eix−
term. We can further restrict

our charges so that they lie in a single su(2|2) by imposing ΠQ− = −Q− so that they

now only depend on the fermionic fields Υα1̇. In the full geometry the charges are Q− =

– 39 –



J
H
E
P
0
3
(
2
0
0
7
)
0
9
4

∫
dσe±

i
2x−

Ω (Y, Y ∗, Υ, Υ ∗) where Ω is a local function of the physical fields and including the

effect of the exponential factor gives rise to the non-trivial phase factor, cf. section 3. We

note that even at higher orders in fields there are no additional non-local terms depending

on x− and so the effects of the non-trivial coproduct are entirely captured by including the

eix−
terms.

C. Rewriting the uniform light-cone gauge action

For the superstring computation in uniform light-cone gauge, we make use of the result

of [29]. The authors of that paper wrote the Green-Schwarz superstring in a first order

formalism and fixed the uniform light-cone gauge and the kappa-symmetry. In order to

quantize the theory, they considered the near-plane wave limit. The Lagrangian was ex-

panded in the transverse fields and the fermions were shifted χ 7→ χ + Φ(p, x, χ) to obtain

a canonical kinetic term. Furthermore the fields were rescaled approriately and a canoni-

cal transformation was applied to the bosonic sector to remove all non-derivative quartic

terms. The results we are interested in are given in (5.4) with rescaling (5.6), in (5.13),

and in (5.16) of [29]. In the notation of [29], the Green-Schwarz superstring in the uniform

light-cone gauge up to quartic19 order in the fields reads

S =

∞∫

−∞

dτ

π∫

−π

dσ

2π
L , L = Lkin −H , H = H2 + H4 (C.1)

with20

Lkin = pM ẋM − i

2
str

(
Σ+χχ̇

)

H2 =
1

2
p2

M +
λ̃

2
x́2

M +
1

2
x2

M +
κ
√

λ̃

2
str

(
Σ+χK̃8χ́

tK8

)
+

1

2
str

(
χ2

)

H4 =
1

2P+

[
2λ̃

(
ý2z2 − ź2y2 + ź2z2 − ý2y2

)

− λ̃ str

(
1

2
χχ́χχ́ +

1

2
χ2χ́2 +

1

4
[χ, χ́]K8[χ, χ́]tK8 + χK̃8χ́

tK8χK̃8χ́
tK8

)

+ λ̃ str

(
(z2 − y2)χ́χ́ +

1

2
x́MxN [ΣM , ΣN ][χ, χ́] − 2xMxNΣM χ́ΣN χ́

)

+
iκ

√
λ̃

4
(xMpN )′ str

(
[ΣM , ΣN ][K̃8χ

tK8, χ]
)
]

.

(C.2)

Here

λ̃ =
4λ

P 2
+

(C.3)

19A discussion of the Dirac brackets in light-cone gauge to all orders in fields has appeared in [54].
20In formula (5.16) of [29] there is actually a factor of 1

2
missing in front of the second term in the second

line.
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is the effective coupling constant which is kept finite in the plane-wave limit P+ → ∞. The

parameter P+ := J + E itself defines the light-cone gauge, and corresponds to P+ = 2J+

in our conventions (4.2).

All gauge symmetries are fixed in (C.2) and we are left with 16 real bosonic and 16

real fermionic degrees of freedom given by the following fields. The bosonic coordinates

and their canonical conjugate momenta are denoted by

xM , pM , M = 1, . . . , 8 . (C.4)

These are the coordinates transverse to the light-cone. They are divided into coordinates

za with a = 1, . . . , 4 on AdS and coordinates ys with s = 1, . . . , 4 on S5. The (complex)

fermionic variables are contained in the matrix

χ =

(
0 Θ

−Θ†Σ 0

)
, Θ =




0 0 θ13 θ14

0 0 θ23 θ24

θ31 θ32 0 0

θ41 θ42 0 0


 . (C.5)

The various constant matrices Σ and K used in these formulas are defined as follows:

γ1 =




0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


 , γ2 =




0 0 0 i

0 0 i 0

0 −i 0 0

−i 0 0 0


 , γ3 =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0




γ4 =




0 0 −i 0

0 0 0 i

i 0 0 0

0 −i 0 0


 , γ5 = Σ =




1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1


 (C.6)

ΣM =

((
γa 0

0 0

)
,

(
0 0

0 iγs

))
(C.7)

Σ+ =

(
Σ 0

0 Σ

)
, Σ− =

(
−Σ 0

0 Σ

)
, Σ8 = −Σ+Σ− =

(
�4 0

0 −�4

)
(C.8)

K =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


 , K8 =

(
K 0

0 K

)
, K̃8 =

(
K 0

0 −K

)
. (C.9)

We will now change back to a second order formalism. Using ẋM = ∂H/∂pM we find

the momentum to cubic order in the fields

pM = ẋM +
iκ

√
λ̃

8J+
xN∂σ str

(
[ΣN , ΣM ][K̃8χ

tK8, χ]
)

. (C.10)
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Plugging this into the Lagrangian yields

L = L0 + Lint (C.11)

with

L0 =
1

2
ẋ2

M − λ

2J2
+

x́2
M − 1

2
x2

M − i

2
str

(
Σ+χχ̇

)
− κ

√
λ

2J+
str

(
Σ+χχ́\

)
− 1

2
str

(
χ2

)

Lint = − λ

2J3
+

(
ý2z2 − ź2y2 + ź2z2 − ý2y2

)

+
λ

4J3
+

str

(
1

2
χχ́χχ́ +

1

2
χ2χ́2 +

1

4
[χ, χ́][χ\, χ́\] + χχ́\χχ́\

)

− λ

4J3
+

str

(
(z2 − y2)χ́χ́ +

1

2
x́MxN [ΣM , ΣN ][χ, χ́] − 2xMxNΣM χ́ΣN χ́

)

+
iκ
√

λ

16J2
+

xM ẋN∂σ str
(
[ΣM , ΣN ][χ\, χ]

)

(C.12)

where we used λ̃ = λ/J2
+ and introduced the conjugation ()\. For bosonic (X) and fermionic

(χ) supermatrices

X =

(
A 0

0 D

)
, χ =

(
0 B

C 0

)
(C.13)

this is defined as

X\ := K8X
tK8 =

(
KAtK 0

0 KDtK

)
, χ\ := K̃8χ

tK8 =

(
0 KCtK

−KBtK 0

)
.

(C.14)

If the bosonic matrix is a product of fermionic ones, we can use (χ1χ2)
\ = −χ\

2χ
\
1.

To clean up the notation, we finally put the bosonic degrees of freedom into a super-

matrix

X := xMΣM , (C.15)

rescale X → √
2J+ X, χ → √

J+ χ, σ →
√

λ/J+ σ and fix κ = 1. Then the action takes

the form (5.3) given in the main text.

D. SU(2)4 T-matrix in uniform light-cone gauge

Here we list our results for the full T-matrix in uniform light-cone gauge. There are some
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identities, which are useful in this context:

ε′p − εp′ = sinh(θ − θ′)

(p − p′) cosh θ−θ′

2 = (ε + ε′) sinh θ−θ′

2

sinh θ
2 = 1

2

√
ε + p − 1

2

√
ε − p (D.1)

cosh θ
2 = 1

2

√
ε + p + 1

2

√
ε − p

sinh θ−θ′

2 = 1
2

√
(ε + p)(ε′ − p′) − 1

2

√
(ε − p)(ε′ + p′)

cosh θ−θ′

2 = 1
2

√
(ε + p)(ε′ − p′) + 1

2

√
(ε − p)(ε′ + p′)

Boson-Boson

� |YaȧY
′
bḃ
〉 = + 1

2
(p−p′)2

ε′p−εp′ |YaȧY
′
bḃ
〉 + pp′

ε′p−εp′

(
|YaḃY

′
bȧ〉 + |YbȧY

′
aḃ
〉
)

− pp′

ε′p−εp′ sinh θ−θ′

2

(
εȧḃε

α̇β̇|Ψaα̇Ψ ′
bβ̇
〉 + εabε

αβ |ΥαȧΥ
′
βḃ
〉
)

� |Zαα̇Z ′
ββ̇
〉 = − 1

2
(p−p′)2

ε′p−εp′ |Zαα̇Z ′
ββ̇
〉 − pp′

ε′p−εp′

(
|Zαβ̇Z ′

βα̇〉 + |Zβα̇Z ′
αβ̇

〉
)

+ pp′

ε′p−εp′ sinh θ−θ′

2

(
εα̇β̇εȧḃ|ΥαȧΥ

′
βḃ
〉 + εαβεab|Ψaα̇Ψ ′

bβ̇
〉
)

� |YaȧZ
′
αα̇〉 = − 1

2
p2−p′2

ε′p−εp′ |YaȧZ
′
αα̇〉 + pp′

ε′p−εp′ cosh θ−θ′

2

(
|ΥαȧΨ

′
aα̇〉 − |Ψaα̇Υ ′

αȧ〉
)

� |Zαα̇Y ′
aȧ〉 = + 1

2
p2−p′2

ε′p−εp′ |Zαα̇Y ′
aȧ〉 − pp′

ε′p−εp′ cosh θ−θ′

2

(
|Ψaα̇Υ ′

αȧ〉 − |ΥαȧΨ
′
aα̇〉

)

(D.2)

Fermion-Fermion

� |Ψaα̇Ψ ′
bβ̇
〉 = + pp′

ε′p−εp′

(
|Ψbα̇Ψ ′

aβ̇
〉 − |Ψaβ̇Ψ ′

bα̇〉
)

− pp′

ε′p−εp′ sinh θ−θ′

2

(
εα̇β̇εȧḃ|YaȧY

′
bḃ
〉 − εabε

αβ|Zαα̇Z ′
ββ̇
〉
)

� |ΥαȧΥ
′
βḃ
〉 = − pp′

ε′p−εp′

(
|ΥβȧΥ

′
αḃ
〉 − |ΥαḃΥ

′
βȧ〉

)

+ pp′

ε′p−εp′ sinh θ−θ′

2

(
εȧḃε

α̇β̇|Zαα̇Z ′
ββ̇
〉 − εαβεab|YaȧY

′
bḃ
〉
)

� |Ψaα̇Υ ′
βḃ
〉 = − pp′

ε′p−εp′ cosh θ−θ′

2

(
|YaḃZ

′
βα̇〉 + |Zβα̇Y ′

aḃ
〉
)

� |ΥαȧΨ
′
bβ̇
〉 = + pp′

ε′p−εp′ cosh θ−θ′

2

(
|Zαβ̇Y ′

bȧ〉 + |YbȧZ
′
αβ̇

〉
)

(D.3)

– 43 –



J
H
E
P
0
3
(
2
0
0
7
)
0
9
4

Boson-Fermion
� |YaȧΨ

′
bβ̇
〉 = + 1

2
(p′−p)p′

ε′p−εp′ |YaȧΨ
′
bβ̇
〉 + pp′

ε′p−εp′ |YbȧΨ
′
aβ̇
〉

+ pp′

ε′p−εp′ cosh θ−θ′

2 |Ψaβ̇Y ′
bȧ〉 − pp′

ε′p−εp′ sinh θ−θ′

2 εabε
αβ|ΥαȧZ

′
ββ̇
〉

� |YaȧΥ
′
βḃ
〉 = + 1

2
(p′−p)p′

ε′p−εp′ |YaȧΥ
′
βḃ
〉 + pp′

ε′p−εp′ |YaḃΥ
′
βȧ〉

+ pp′

ε′p−εp′ cosh θ−θ′

2 |ΥβȧY
′
aḃ
〉 + pp′

ε′p−εp′ sinh θ−θ′

2 εȧḃε
α̇β̇|Ψaα̇Z ′

ββ̇
〉

� |Ψaα̇Y ′
bḃ
〉 = + 1

2
(p−p′)p
ε′p−εp′ |Ψaα̇Y ′

bḃ
〉 + pp′

ε′p−εp′ |Ψbα̇Y ′
aḃ
〉

+ pp′

ε′p−εp′ cosh θ−θ′

2 |YaḃΨ
′
bα̇〉 + pp′

ε′p−εp′ sinh θ−θ′

2 εabε
αβ|Zαα̇Υ ′

βḃ
〉

� |ΥαȧY
′
bḃ
〉 = + 1

2
(p−p′)p
ε′p−εp′ |ΥαȧY

′
bḃ
〉 + pp′

ε′p−εp′ |ΥαḃY
′
bȧ〉

+ pp′

ε′p−εp′ cosh θ−θ′

2 |YbȧΥ
′
αḃ
〉 − pp′

ε′p−εp′ sinh θ−θ′

2 εȧḃε
α̇β̇|Zαα̇Ψ ′

bβ̇
〉

(D.4)

� |Zαα̇Ψ ′
bβ̇
〉 = − 1

2
(p′−p)p′

ε′p−εp′ |Zαα̇Ψ ′
bβ̇
〉 − pp′

ε′p−εp′ |Zαβ̇Ψ ′
bα̇〉

− pp′

ε′p−εp′ cosh θ−θ′

2 |Ψbα̇Z ′
αβ̇

〉 − pp′

ε′p−εp′ sinh θ−θ′

2 εα̇β̇εȧḃ|ΥαȧY
′
bḃ
〉

� |Zαα̇Υ ′
βḃ
〉 = − 1

2
(p′−p)p′

ε′p−εp′ |Zαα̇Υ ′
βḃ
〉 − pp′

ε′p−εp′ |Zβα̇Υ ′
αḃ
〉

− pp′

ε′p−εp′ cosh θ−θ′

2 |ΥαḃZ
′
βα̇〉 + pp′

ε′p−εp′ sinh θ−θ′

2 εαβεab|Ψaα̇Y ′
bḃ
〉

� |Ψaα̇Z ′
ββ̇
〉 = − 1

2
(p−p′)p
ε′p−εp′ |Ψaα̇Z ′

ββ̇
〉 − pp′

ε′p−εp′ |Ψaβ̇Z ′
βα̇〉

− pp′

ε′p−εp′ cosh θ−θ′

2 |Zβα̇Ψ ′
aβ̇
〉 + pp′

ε′p−εp′ sinh θ−θ′

2 εα̇β̇εȧḃ|YaȧΥ
′
βḃ
〉

� |ΥαȧZ
′
ββ̇
〉 = − 1

2
(p−p′)p
ε′p−εp′ |ΥαȧZ

′
ββ̇
〉 − pp′

ε′p−εp′ |ΥβȧZ
′
αβ̇

〉

− pp′

ε′p−εp′ cosh θ−θ′

2 |Zαβ̇Υ ′
βȧ〉 − pp′

ε′p−εp′ sinh θ−θ′

2 εαβεab|YaȧΨ
′
bβ̇
〉

(D.5)
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